Получение и формирование свойств ферритов литиевой группы при высокоэнергетических механических и электронно-пучковых воздействиях
Введение…………………………………………………………………………………………………………………………….. 6
Глава 1 Структура, свойства и получение ферритов…………………………………………………… 15
1.1 Кристаллическая структура ферритов-шпинелей…………………………………………………………15
1.2 Магнитные свойства ферритов……………………………………………………………………………………. 20
1.3 Электрические свойства ферритов……………………………………………………………………………….23
1.4 Методы получения ферритовых материалов………………………………………………………………..25
1.4.1 Керамический способ получения ферритов……………………………………………………………… 25
1.4.2 Методы химической гомогенизации………………………………………………………………………… 29
1.4.3 Активационные методы получения ферритов………………………………………………………….. 30
1.5 Механическая активация материалов………………………………………………………………………….31
1.5.1 Механизмы дефектообразования при механическом измельчении в
планетарных мельницах……………………………………………………………………………………………………. 31
1.5.2 Использование механической активации для получения ферритов………………………….34
1.6 Действие радиационно-термического нагрева на протекание твердофазных
взаимодействий в оксидных и ферритовых материалах…………………………………………………… 36
1.7 Твердофазные процессы……………………………………………………………………………………………… 41
1.7.1 Кинетические модели твердофазных взаимодействий………………………………………………41
1.7.2 Особенности твердофазных превращений в литиевых ферритовых системах………… 45
1.8 Состояние вопроса и постановка задачи исследования……………………………………………… 46
Глава 2 М етодика проведения эксперим ентов……………………………………………………………..50
2.1 Изготовление экспериментальных образцов………………………………………………………………..50
2.2 Механическая обработка порошков в шаровых мельницах……………………………………….. 50
2.3 Термический нагрев …………………………………………………………………………………………………….52
2.4 Радиационно-термический нагрев………………………………………………………………………………..52
2.4.1 Методика проведения эксперимента………………………………………………………………………… 52
2.4.2 Измерение температуры в мощных пучках ускоренных электронов………………………. 56
2.5 Рентгеновская дифрактометрия……………………………………………………………………………………58
2.5.1 Методика рентгенофазового анализа……………………………………………………………………….. 58
2.5.2 Рентгенофазовый анализ литиевых и литий-замещенных ферритов……………………….. 62
2.6 Термогравиметрия и дифференциально-сканирующая калориметрия………………………. 65
2.6.1 Методика термического анализа……………………………………………………………………………… 65
2.6.2 Кинетический анализ с помощью термогравиметрических измерений…………………… 68
2.6.3 Разработка метода контроля гомогенности и фазового состава ферритов с
помощью термомагнитометрических измерений………………………………………………………………71
2.7 Исследование микроструктуры ферритов методами Брунауэра-Эммета-
Теллера, лазерной дифракции и микроскопии…………………………………………………………………..80
2.8 Измерение плотности и пористости ферритовых образцов………………………………………… 81
2.9 Измерения электромагнитных свойств образцов………………………………………………………… 81
2.9.1 Методика измерения электрической проводимости…………………………………………………. 81
2.9.2 Методика измерения магнитных свойств………………………………………………………………….83
2.10 Выводы по главе 2 ………………………………………………………………………………………………………84
Глава 3 Твердофазное взаимодействие в системах Fe2O3-L i2CO3, Fe2O3-
Li2CO3-ZnO, Fe2O3-L i2CO3-TiO2 при термическом нагреве………………………………………. 8 6
3.1 Микроструктурный и термический анализы компонентов реакционных
смесей………………………………………………………………………………………………………………………………… 8 6
3.1.1 Рентгенофазовый анализ исходных порошков…………………………………………………………. 8 6
3.1.2 Микроструктурный анализ исходных порошков……………………………………………………… 8 8
3.1.3 Термический анализ исходных порошков…………………………………………………………………93
3.2 Термический анализ порошковых смесей при неизотермическом нагреве……………….95
3.2.1 Система Fe2 O3-L i 2 CO3 (1:1)………………………………………………………………………………………95
3.2.2 Система Fe2 O3-L i 2 CO3 (5:1)………………………………………………………………………………………99
3.2.3 Система Fe2 O3-L i 2 CO3-Z nO ……………………………………………………………………………………. 112
3.2.4 Система Fe2 O3-L i 2 CO3 -TiO 2 …………………………………………………………………………………… 116
3.3 Твердофазные взаимодействия в системе Fe 2 O3-L i 2 CO3-ZnO при
изотермическом нагреве …………………………………………………………………………………………………. 1 2 1
3.3.1 Рентгенофазовый анализ………………………………………………………………………………………… 121
3.3.2 Термический анализ………………………………………………………………………………………………..121
3.4 Твердофазные взаимодействия в системе Fe 2 O3-L i 2 CO 3 -TiO 2 при
изотермическом нагреве ………………………………………………………………………………………………….125
3.4.1 Рентгенофазовый анализ………………………………………………………………………………………… 126
3.4.2 Термический анализ………………………………………………………………………………………………..128
3.5 Магнитные свойства реакционных смесей, синтезированных при
высокотемпературном обжиге ……………………………………………………………………………………….. 132
3.6 Выводы по главе 3……………………………………………………………………………………………………… 134
Глава 4 Образование литиевых и замещенных литиевых ферритов из
механически активированных реагентов…………………………………………………………………… 138
4.1 Микроструктурный и рентгенофазовый анализы исходных реагентов после
механической активации в планетарной мельнице………………………………………………………….138
4.2 Исследование влияния механической активации исходных реагентов на
реактивность ферритовой системы Fe2O3-L i2CO3 …………………………………………………………..149
4.3 Образование литиевых ферритов из механически активированной смеси
реагентов Fe2O3-L i2CO3…………………………………………………………………………………………………… 155
4.4 Образование литий-цинковых ферритов из механически активированной
смеси реагентов Fe2O3-L i2CO3-Z n O ………………………………………………………………………………..169
4.5 Образование литий-титановых ферритов из механически активированной
смеси реагентов Fe2O3-L i2CO3-TiO 2………………………………………………………………………………..175
4.6 Выводы по главе 4 ……………………………………………………………………………………………………… 180
Глава 5 Получение ферритовых порошков при нагреве
высокоэнергетическими электронными пучками ……………………………………………………. 183
5.1 Температурные и кинетические закономерности синтеза ферритов при
термическом и радиационно-термическом нагреве………………………………………………………….183
5.1.1 Рентгенофазовый анализ ……………………………………………………………………………………….. 183
5.1.2 Термомагнитометрический анализ………………………………………………………………………… 192
5.1.3 Кинетические зависимости степени накопления шпинельных фаз и
степени превращения исходных оксидов при термическом и радиационно
термическом нагреве………………………………………………………………………………………………………. 195
5.1.4 Кинетический анализ синтеза ферритов………………………………………………………………….201
5.1.5 Анализ удельной намагниченности ферритов……………………………………………………….. 207
5.2 Температурные и кинетические закономерности синтеза ферритов при
термическом и радиационно-термическом нагреве механоактивированных
порошковых смесей ……………………………………………………………………………………………………….. 209
5.2.1 Дифрактометрические исследования……………………………………………………………………… 209
5.2.2 Кинетический анализ синтеза ферритов из механоактивированных
порошковых смесей ……………………………………………………………………………………………………….. 214
5.2.3 Термомагнитометрический анализ…………………………………………………………………………. 218
5.2.4 Кинетические зависимости удельной намагниченности ферритов ………………………. 225
5.3 Твердофазное образование литий-замещенных ферритов в условиях нагрева
электронными пучками импульсного и непрерывного действия…………………………………… 226
5.4 Выводы по главе 5………………………………………………………………………………………………………230
Глава 6 Получение литиевой ферритовой керамики при механических и
электронно-пучковых воздействиях…………………………………………………………………………… 234
6.1 Влияние механической активации смеси реагентов на процесс уплотнения
ферритовой керамики при термическом нагреве……………………………………………………………. 234
6.2 Влияние механического измельчения синтезированных ферритовых порошков
на структуру и свойства литиевых ферритов…………………………………………………………………..236
6.3 Исследование структуры и электромагнитных свойств литиевой ферритовой
керамики, полученной из ультрадисперсных синтезированных порошков……………………. 246
6.4 Микроструктура, диэлектрические и магнитные свойства литий-цинковых
ферритов, полученных в условиях нагрева импульсным пучком электронов…………………251
6.5 Микроструктура, диэлектрические и магнитные свойства литий-цинковых
ферритов, полученных в условиях нагрева непрерывным пучком электронов……………….255
6.6 Технологическая схема получения ферритов при высокоэнергетических
механических и электронно-пучковых воздействиях…………………………………………………….. 260
6.7 Выводы по главе 6………………………………………………………………………………………………………263
Основные вы воды ………………………………………………………………………………………………………….267
Заклю чение……………………………………………………………………………………………………………………..271
Список сокращений и условных обозначений…………………………………………………………………..272
Список л и тер ату р ы ……………………………………………………………………………………………………….273
Приложение 1 Акт о внедрении материалов диссертационного исследования в АО
«НПЦ П олю с»………………………………………………………………………………………………………………… 305
Приложение 2 Акт о внедрении материалов диссертационного исследования в
ООО «ЛИОМЕД» …………………………………………………………………………………………………………… 306
Приложение 3 Акт об использовании результатов диссертационного
исследования в учебной и научной деятельности НИ ТПУ……………………………………………..307
Приложение 4 Патенты на результаты интеллектуальной деятельности………………………. 308
Актуальность темы исследования
Ферриты литиевой группы со шпинельной структурой представляют особый интерес для
науки и техники, так как обладают рядом уникальных свойств, расширяющих сферу их
применения вследствие частичного замещения лития другими металлами, такими как цинк,
титан, марганец и т.д. При этом появляется возможность управлять электрическими и
магнитными свойствами в соответствии с назначением использования ферритов.
Активное взаимодействие данного класса ферритов с электромагнитным излучением
низкочастотного участка СВЧ диапазона предопределило их широкое применение в различных
устройствах современной СВЧ техники, например, в качестве дискретных быстродействующих
фазовращателей. Кроме того, замещенные цинком литиевые ферриты могут использоваться в
качестве активной фазы композиционных изделий для радиопоглощающих покрытий. В
последнее время рассматривается возможность применения литиевых ферритов в качестве
катодного материала в литий-ионных батареях, а также в качестве сенсоров газовых датчиков.
Эксплуатационные свойства литий-замещенных ферритов (ЛЗФ) напрямую зависят от
фазового состава, формируемого при изготовлении ферритов.
Существующие керамические технологии производства ферритовой керамики сложны,
многооперационны, чрезвычайно длительны, отличаются высокими энергетическими и
материальными затратами, недостаточным качеством продукции. Предпринимаемые попытки
избавиться от недостатков существующих технологий сводились лишь к механической
модернизации, не затрагивая их физических основ.
Очевидно, что для коренного изменения существующего положения необходимо
отказаться от модернизационного подхода, искать и разрабатывать принципиально новые,
нетрадиционные пути решения проблемы.
С этих позиций весьма перспективными представляются результаты по механической
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!