Свойства тонких плёнок оксида титана (TiO2) и аморфного углерода (а-С), осаждённых с помощью дуальной магнетронной распылительной системы
Введение ……………………………………………………………………………………………………. 4
Глава 1. Осаждение оксидных тонкоплёночных покрытий с помощью
дуальных МРС …………………………………………………………………………………………. 11
1.1. Принцип действия магнетронной распылительной системы ………….. 12
1.2. Магнетронная распылительная система с реакционным газом……….. 14
1.3. Работа магнетронной распылительной системы при использовании
импульсного питания средней частоты ………………………………………………….. 19
1.4. Осаждение покрытий с помощью дуальных магнетронных
распылительных систем ………………………………………………………………………… 22
1.5. Конструкции дуальных МРС…………………………………………………………. 25
1.6. Основные типы источников питания дуальных МРС …………………….. 28
1.7 Фотокаталитические плёнки оксида титана ………………………………………. 32
1.8. Общая характеристика углеродных покрытий …………………………………. 38
Глава 2. Экспериментальное оборудование и методики исследований ………. 44
2.1. Установка для ионно-плазменного осаждения покрытий «Яшма-5»…. 44
2.2. Дуальная магнетронная распылительная система …………………………….. 51
2.3. Источник питания дуальной МРС……………………………………………………. 55
2.4. Измерение толщины и скорости осаждения покрытий …………………….. 58
2.5. Измерение оптических свойств покрытий ……………………………………….. 58
2.5.1. Коэффициент пропускания ………………………………………………………… 59
2.5.2. Коэффициент отражения……………………………………………………………. 60
2.5.3 Коэффициент преломления ………………………………………………………… 60
2.6. Методики измерений физических свойств покрытий ……………………….. 62
2.6.1. Твёрдость покрытий ………………………………………………………………….. 62
2.6.2. Адгезия ……………………………………………………………………………………… 63
2.6.3. Коэффициент трения …………………………………………………………………. 65
2.7. Спектры рамановского излучения …………………………………………………… 65
Глава 3. Осаждение плёнок оксида титана с помощью дуальной МРС ………. 68
3.1. Режимы работы дуальной МРС при реактивном распылении титана .. 68
3.3. Исследование фотокаталитических свойств плёнок TiO2, полученных с
помощью дуальных МРС ………………………………………………………………………. 76
3.4. Оптические свойства плёнок оксида титана …………………………………… 82
3.5. Оптические свойства плёнок оксида титана, полученных с помощью
дуальной МРС ………………………………………………………………………………………. 85
Глава 4. Свойства плёнок углерода, полученных с помощью дуальной МРС95
4.1. Получение АПП ……………………………………………………………………………… 95
4.1.1. Химические методы осаждения АПП ………………………………………… 95
4.2.2. Физические методы осаждения АПП …………………………………………. 96
4.2. Исследование свойств покрытий а-С, полученных с помощью дуальной
МРС ……………………………………………………………………………………………………. 102
Заключение ……………………………………………………………………………………………. 114
Список используемых источников ………………………………………………………….. 116
Актуальность работы. Модифицирующие и функциональные
тонкоплёночные покрытия широко известны и активно используются
практически во всех отраслях науки и техники. Несмотря на это, технологии
и оборудование для их осаждения нуждаются в совершенствовании.
Видимо, можно утверждать, что одним из наиболее распространённых
методов получения тонкоплёночных покрытий является вакуумное
осаждение из плазмы магнетронного разряда. Впервые оно было подробно
описано в 1974 году [1], а в настоящее время является безусловным лидером
по количеству вариантов исполнения и областей применения.
Сущность метода состоит в организации аномального тлеющего
разряда в скрещенных электрическом и магнитом полях. Это позволяет
удерживать плазму, частицы которой ускоряются в электрическом поле и
распыляют мишень. Распылённые атомы осаждаются на подложке, образуя
качественные тонкие плёнки. Метод характеризуется высокой
производительностью и энергетической эффективностью.
Наиболее изученной областью применения магнетронных
распылительных систем (МРС) является осаждение металлических
покрытий. Технологические возможности подобных устройств сейчас вполне
понятны. Но здесь есть как минимум два вопроса, которые представляют
интерес для науки: высокоскоростное осаждение качественных покрытий
значительной толщины (от 10 до 300 мкм) и получение тонких и сверхтонких
(менее 5 нм) плёнок.
Осаждение покрытий из химических соединений обычно связано с
распылением в среде, содержащей какой-либо реакционный газ: кислород,
азот, ацетилен и др. Такой способ осаждения позволяет получать оксиды,
нитриды, карбиды, но его применение приводит к появлению целого ряда
трудностей: нежелательное окисление мишени, электрические пробои,
проблемы «исчезающего анода» и т.д. Эти явления значительно влияют на
стабильность рабочих параметров МРС и свойства получаемых покрытий.
Схожие проблемы присущи и плёнкам углерода, который при распылении в
среде инертного газа может вступать в реакции с остаточным водородом,
образуя на поверхности катода диэлектрический слой гидрогенизированного
углерода (а-С:Н). Подобные трудности частично устраняются
конструктивными улучшениями МРС, подбором параметров источника
питания и т.д.
В процессе совершенствования технологических установок было
найдено два важных технических решения, которые позволили
минимизировать значение этих факторов: применение импульсных
источников питания (с частотой от 1-100 кГц и 13,56 МГц) и создание
дуальных систем, представляющих собой комбинацию из двух МРС,
изолированных друг от друга и работающих от переменного напряжения [2].
Здесь первая система, находящаяся под отрицательным потенциалом,
выполняет функцию катода, а вторая – анода. Этим магнетрон избавляется
от проблемы «исчезающего анода» и одновременно нейтрализует на себе
избыточный положительный заряд, накопленный в процессе распыления.
При смене полярности напряжения катоды как бы меняются ролями.
Дуальная МРС, по нашему мнению, является технологически удобным,
простым и относительно дешёвым источником плазмы. Она позволяет
значительно повысить производительность, сократить расходы на
По результатам выполненной работы можно сделать следующие
выводы.
1. Дуальная МРС является эффективным инструментом для осаждения
плёнок оксида титана с высокими фотокаталитическими и оптическими
характеристиками.
2. Изменяя конфигурацию магнитной системы, можно управлять свойствами
получаемых покрытий за счет изменения степени ионного воздействия на
растущую плёнку.
3. Использование дуальной МРС с зеркальной конфигурацией магнитного
поля позволяет получать плёнки оксида титана с наиболее высоким
коэффициентом фотокаталитической активности. Это достигается за счет
более пористой структуры и наличием в составе покрытия фаз рутила и
анатаза.
4. Замкнутая конфигурация магнитного поля дуальной МРС делает покрытия
оксида титана более плотными, т.к. в процессе роста плёнки подвергаются
высокому ионному воздействию. Это подтверждается более высоким
коэффициентом преломления. Полученные плёнки обладают лучшими
оптическими характеристиками и больше подходят для использования в
качестве просветляющего слоя низкоэмиссионных покрытий.
5. Использование дуальной МРС в качестве инструмента для осаждения
плёнок а-С позволяет избежать проблемы дугообразования из-за
взаимодействия углеродной мишени с присутствующим в рабочей камере
водородом.
7. Конфигурация магнитного поля не оказывает существенного влияния на
скорость осаждения плёнок а-С. Она мало влияет на твёрдость и модуль
упругости. Наиболее твёрдые плёнки получены при минимальном давлении
(0,1 Па).
8. Плёнки а-С, осажденные с помощью дуальной МРС с замкнутой
конфигурацией магнитного поля, имеют меньшие коэффициенты трения и
большую стойкость к скрэтч-тесту, чем образцы, полученные с помощью
дуальной МРС, обладающей зеркальной конфигурацией магнитного поля.
9. Содержание sp3-фазы в плёнках а-С падает с увеличением давления
рабочего газа. Плёнки, полученные с помощью дуальной МРС с зеркальной
конфигурацией магнитного поля, обладают более высоким содержанием
алмазоподобной фазы.
Помогаем с подготовкой сопроводительных документов
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!