Top.Mail.Ru
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

ГЛАВА 1. ВЛИЯНИЕ ВОДОРОДА НА ДЕФЕКТНУЮ СТРУКТУРУ

И СВОЙСТВА МЕТАЛЛОВ И СПЛАВОВ . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1. Взаимодействие водорода с циркониевыми сплавами и его влияние на

их свойства. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1. Влияние водорода на фазовый состав . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.2. Растворение водорода в решетке . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.3. Влияние водорода на электронную структуру циркониевых

сплавов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.4. Диффузия водорода в решетке . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2. Влияние водорода на дефектную структуру металлов . . . . . . . . . . . . . . . 20

1.2.1. Взаимодействие водорода со структурными дефектами . . . . . . . . . . . . 20

1.2.2. Водород-индуцированные дефекты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3. Физические основы поведения позитронов в твердых телах

и особенности их применения для исследования дефектов

водородного происхождения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3.1. Время жизни позитронов в материале . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3.2. Доплеровское уширение аннигиляционной линии позитронов. . . . . . . 30

1.3.3. Влияние дефектной структуры на параметры аннигиляции

позитронов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.4. Влияние водорода на параметры аннигиляции позитронов в

дефектных структурах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

/
1.4. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ. . . . . . . . . . . . . . . 42

2.1. Подготовка образцов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2. Методы насыщения водородом, определения концентрации

и распределения водорода по глубине . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3. Позитронная спектроскопия дефектов . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.1. Спектрометрия времени жизни позитронов . . . . . . . . . . . . . . . . . . . . . . 48

2.3.2. Определение вклада источника позитронов на основе 44Ti в

спектр времени жизни позитронов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.3. Спектрометрия доплеровского уширения аннигиляционной линии . . . 53

2.4. Моделирование системы Zr, Zr-H и Zr-v-H . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5. Структурные методы анализа и исследование

механических характеристик . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.6. Способ подготовки образцов для исследования

водород-индуцированных дефектов с применением радиоактивного

изотопа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ГЛАВА 3. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ ПАРАМЕТРОВ

ПОЗИТРОННОЙ АННИГИЛЯЦИИ В

ВОДОРОД-ИНДУЦИРОВАННЫХ ДЕФЕКТАХ СПЛАВА Zr1%Nb . . . . . . . 66

3.1. Результаты моделирования характеристик позитронной аннигиляции

в системе Zr, Zr-H, и Zr-v-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2. Определение характеристик позитронной аннигиляции в

дислокациях циркония . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

/
3.3. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ГЛАВА 4. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

ВЛИЯНИЯ ВОДОРОДА НА ДЕФЕКТНУЮ СТРУКТУРУ СПЛАВА

Zr1%Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1. Исследование структуры и поведения позитронов в образцах

сплава Zr1%Nb после технологического отжига . . . . . . . . . . . . . . . . . . . . . . . 84

4.2. Исследование распределения водорода по глубине при

насыщении циркониевого сплава из газовой фазы . . . . . . . . . . . . . . . . . . . . . 87

4.3. Изменение фазового состава и параметров решетки сплава Zr1%Nb

после насыщения водородом . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4. Экспериментальное исследование зависимости параметров

аннигиляции позитронов от концентрации водорода в сплаве Zr1%Nb . . . . 92

4.4.1. Влияние водорода на характеристики бездефектных

областей кристаллической решетки . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4.2. Влияние водорода на эволюцию дефектной структуры сплава

Zr1%Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2.1. Определение типа водород-индуцированных дефектов в

сплаве Zr1%Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.2.2. Определение концентрации водород-индуцированных дефектов

в сплаве Zr1%Nb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.5. Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

ЗАКЛЮЧЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . . . . . . . . . . . . . . . . . . . . . 110

/

Актуальность темы исследования
Сплавы на основе циркония находят применение в современном
реакторостроении в качестве конструкционных материалов для различных
элементов активных зон ядерных реакторов. Причиной тому являются
хорошие прочностные, антикоррозийные и радиационные характеристики
(низкое значение сечения захвата тепловых нейтронов). Сегодня широкое
применение находят бинарные сплавы циркония с ниобием.
Так, в Российской Федерации применяются сплавы Zr1%Nb (марка
Э110), Zr2,5%Nb (марка Э125) для изготовления оболочек тепловыделяющих
элементов ядерных реакторов, топливных каналов, а также
дистанционирующих решеток направляющих трубок и топливных
контейнеров. Однако, в ходе эксплуатации данных изделий в условиях
коррозионной среды, повышенной температуры и ионизирующего излучения,
эти изделия подвержены водородному насыщению, сопровождающемуся
деградацией механических свойств и разрушением материала [1]. Как
показано в работе [2], содержание водорода в оболочках, изготовленных из
сплава Zircaloy-4 составляет 0,03-0,06 масс. % (1,4 – 2,7 ат. %). Для сплавов
Zr1%Nb концентрация водорода после эксплуатации составляет 0,04 – 0,05
масс. % [3] и не превышает значения 0,06 масс. % согласно данным авторов
[4]. Водородное охрупчивание циркониевых сплавов является одной из
важных проблем в области регулирования безопасности водо-водяных
энергетических реакторов, поскольку является одной из причин
механического разрушения оболочек тепловыделяющих элементов.
Степень разработанности темы
Проблема взаимодействия водорода с металлами и сплавами
исследована достаточно подробно. Известно [5,6], что поглощение водорода

В работе впервые было проведено комплексное исследование эволюции
дефектной структуры сплава Zr1%Nb (марка Э110) в зависимости от
содержания водорода с применением метода аннигиляции позитронов.
Анализ литературных данных показал, что насыщение водородом
металлических материалов приводит к формированию таких типов
водород-индуцированных дефектов, как вакансии, дислокации, вакансионные
кластеры, комплексы типа “вакансия-водород” и “кластер водород”. При этом
процесс дефектообразования сопровождается такими изменениями в
кристаллической структуре, как растворение водорода в междоузлиях
решетки, расширение ее объема, образование гидридных фаз.
В ходе проделанного исследования было впервые определено
количественное влияние водорода на характеристики аннигиляции
позитронов в решетке и дефектных структурах сплава Zr1%Nb. В частности,
показано, что:
● увеличение объема кристаллической решетки циркония приводит к
росту времени жизни позитронов по линейному закону с
коэффициентом 1,33 пс / %;
● растворение водорода с локализацией в решетке, а также в окрестности
вакансии циркония приводит к снижению времени жизни позитронов
на 1,2 – 2,5 пс и 7,4 пс, соответственно;
● время жизни, а также коэффициент захвата позитронов в дислокациях
циркония составляет 217 пс и 9,12 ᆞ10 -4
м2с-1, соответственно.
При этом в диссертационной работе продемонстрировано, что
аннигиляция позитронов в сплаве Zr1%Nb происходит в циркониевой
матрице и влиянием ниобия на параметры аннигиляции можно пренебречь.

/
Результаты проведенного исследования показывают, что процесс
эволюции дефектной структуры сплава Zr1%Nb под воздействием водорода
можно разделить на несколько этапов в зависимости от достигнутой
концентрации водорода:
● до 0,008 масс. % водорода – структурные дефекты не образуются;
водород растворяется в междоузлиях циркониевой матрицы, оказывая
влияние на расширение кристаллической решетки;
● до 0,015 масс. % водорода – сопровождается образованием дефектов
типа V-H и V-2H (с локализацией водорода преимущественно в
тетраэдрическом междоузлии) с концентрацией 10-6 – 10-7 ат-1 и
расширением кристаллической решетки вплоть до ~2,4%;
● в диапазоне концентраций 0,023 – 0,061 масс. % водорода происходит
образование дислокаций, плотность которых растет с ростом

концентрации в диапазоне (4,57 – 8,88) 10-8 см-2.
Результаты исследования эволюции дефектной структуры сплава
Zr1%Nb, полученные с применением метода ЭПА, хорошо согласуются с
данными структурных методов анализа, использованных в диссертационном
исследовании, и не противоречат имеющимся литературными данными.
В заключении автор выражает благодарность научному руководителю,
доктору технических наук, профессору Лидеру Андрею Марковичу, а также
сотрудникам отделения экспериментальной физики Томского
политехнического университета за содействие в проведении экспериментов и
обсуждении результатов. Автор считает своим долгом выразить
благодарность Святкину Л.А. за консультации при проведении расчетов
поведения позитронов в исследуемых системах. Также автор благодарит
сотрудника Института физики прочности и материаловедения СО РАН,
Толмачева А.И. за проведение механической деформации методом холодной
прокатки исследуемых в данной работе образцов.

/

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ

    Другие учебные работы по предмету

    Радиационное упрочнение и оптические свойства материалов на основе SiO2
    📅 2022год
    🏢 ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
    Особенности формирования реальной структуры эпитаксиальных CVD-пленок алмаза с природным и модифицированным изотопным составом
    📅 2021год
    🏢 ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»
    Исследование комплексной диэлектрической проницаемости конденсированных сред на основе новых методов терагерцовой импульсной спектроскопии
    📅 2021год
    🏢 ФГБОУ ВО «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»