Диагностика дефектов в металлах на основе скин-эффекта
Объектом исследования является скин-эффект, и исследование его возможности для определения изменения свойств наводороженных слоев поверхности конструкционных материалов. Стоит задача в создании аппаратуры на основе скин-эффекта для контроля толщины слоя наводораживания в ответственных конструкциях.
Введение …………………………………………………………………………………………………………………………. 10
1 Дефектоскоп и скин-эффект ………………………………………………………………………………………….. 12
1.1 Определение дефектоскопа………………………………………………………………………………………………………… 12
1.2 Применение дефектоскопа …………………………………………………………………………………………………………. 12
1.3 Принцип обнаружения ……………………………………………………………………………………………………………….. 13
1.4 Способ пользования …………………………………………………………………………………………………………………… 13
1.4.1 Метод ультразвуковой дефектоскопии ………………………………………………………………………………….. 14
1.4.2 Метод вихретоковой дефектоскопии …………………………………………………………………………………….. 15
1.4.3 Метод радиационной дефектоскопии …………………………………………………………………………………… 16
1.4.4 Метод магнитно-порошковой дефектоскопии ……………………………………………………………………….. 17
1.5 Скин-эффект……………………………………………………………………………………………………………………………….. 17
1.5.1 Причина ………………………………………………………………………………………………………………………………. 18
1.5.2 Уравнение, описывающее скин-эффект…………………………………………………………………………………. 19
1.5.3 Влияние материала на глубину кожи …………………………………………………………………………………….. 23
1.5.4 Применение ………………………………………………………………………………………………………………………… 24
2. Расчётная часть ……………………………………………………………………………………………………………. 25
2.1 Зависимость сопротивления материала от частоты ……………………………………………………………………… 25
3 Экспериментальная часть ……………………………………………………………………………………………… 37
3.1 Описание конструкции исследовательского объекта ……………………………………………………………………. 37
4 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение………………………… 47
Введение …………………………………………………………………………………………………………………………………………. 47
4.1 Потенциальные потребители результатов исследования………………………………………………. 47
4.2 Анализ конкурентных технических решений с позиции ресурсоэффективности и ресурсосбережения
……………………………………………………………………………………………………………………………………………………….. 48
4.3 SWOT – анализ…………………………………………………………………………………………………………………………….. 50
4.4 План проекта ……………………………………………………………………………………………………………………………… 54
4.5 Бюджет научного исследования ………………………………………………………………………………………………….. 57
4.5.1 Сырье, материалы, покупные изделия и полуфабрикаты (за вычетом отходов) ………………………. 57
4.5.2 Специальное оборудование для экспериментальных работ…………………………………………………… 57
4.5.3 Основная заработная плата ………………………………………………………………………………………………….. 58
4.5.4 Дополнительная заработная плата научно-производственного персонала …………………………….. 61
4.5.5 Отчисления на социальные нужны ……………………………………………………………………………………….. 62
4.5.6 Научные и производственные командировки ……………………………………………………………………….. 63
4.5.7 Оплата работ, выполняемых сторонними организациями и предприятиями ………………………….. 64
4.5.8 Накладные расходы ……………………………………………………………………………………………………………… 64
4.5.9 Формирование бюджета затрат научно-исследовательского проекта …………………………………….. 65
4.6 Оценка сравнительной эффективности исследования ………………………………………………………………….. 66
9
Все основные дефектоскопические методы нацелены на выявление
существующих дефектов, трещин, каверн, непроваров и так далее. Причем
тестирование проводится либо сразу после сварки, либо перед вводом объекта в
эксплуатацию. Однако существует целый класс материалов и деталей, в которых
из-за особых условий эксплуатации происходят изменения на уровне
кристаллической решетки, например эффект ‘наводораживания’, при высокой
температуре, давлении и в присутствии водород, он диффундирует в материал.
Атомы водорода проникают внутрь кристаллической решетки, и физические
свойства материала меняются, он становится хрупким. При этом в материале еще
не наблюдается трещин, то есть обычными дефектоскопическими методами
выявить изменение структуры материала и оценить степень ее повреждения не
возможно. Метод нуждается в глубокой научной проработке и проведении
большого количества экспериментов.
Для оценки степени и глубины наводораживания предлагается
использовать Скин-эффект, с его помощью становится возможным измерять
омическое сопротивление поверхностных слоев материала, причем в силу своей
природы метод является интегральным, то есть измерение происходит по всей
контролируемой поверхности изделия. Незначительные неравномерности на
поверхности не оказывают существенного влияния на окончательный результат.
Использование современных DDS микросхем – цифровых синтезаторов частоты
позволяет автоматизировать процесс измерения, исключив из процесса руки
человека. Оператор устанавливает только частоту начала и окончания
тестирования и шаг приращения частоты. Для повышения достоверности
результатов снимаются 3 параметра, отношение амплитуд в точках контроля с
выводом в логарифмическом виде – АЧХ, фазовый сдвиг между сигналами в
точках контроля – ФЧХ и омическая проводимость в логарифмическом виде
между точками контроля. Использование трех различных параметров позволяет
исключить влияние реактивных параметров, влияния емкости и индуктивности
на окончательный результат. Достоинством метода является возможность
измерения прямо на месте работы контролируемого участка. Накладываются
электроды, нажимается кнопка ‘Старт’ и происходит построение 3-х графиков
АЧХ, ФЧХ и сопротивления от частоты. Сравнивая текущие измеренные данные,
с данными снятыми непосредственно перед сдачей объекта в эксплуатацию,
становится возможным контролировать степень и глубину наводороженного слоя.
1 Дефектоскоп и скин-эффект
Последние выполненные заказы
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!