Оценка релевантности текстовых отзывов сервиса анкетирования

Высотенко, Егор Игоревич Базовая кафедра интеллектуальных систем управления
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ………………………………………………………………………………………………… 4
1 Теоретические основы расчета критериев оценки релевантности текстовых
отзывов………………………………………………………………………………………………………..6
1.1Сервис анкетирования студентов СФУ……………………………………………….. 6
1.2Критерии оценки релевантности текстовых отзывов…………………………… 7
1.3Методы нормализации текста………………………………………………………………8
1.3.1 Стемминг…………………………………………………………………………………….. 8
1.3.2 Лемматизация……………………………………………………………………………….9
1.4 Подходы к решению задачи автоматической классификации текстовых
отзывов………………………………………………………………………………………………………11
1.4.1 Методы, основанные на машинном обучении…………………………….. 11
1.4.2 Метод, основанный на словаре тональностей…………………………….. 17
2 Исследование и выбор методов классификации текстов…………………………..20
2.1Анализ и сравнение методов машинного обучения при расчете критерия
принадлежности…………………………………………………………………………………………24
2.1.1 Предобработка данных………………………………………………………………. 24
2.1.2 Машинное обучение……………………………………………………………………25
2.2Анализ и сравнение методов нормализации при расчете критерия
тональной принадлежности словарным подходом………………………………………28
3 Программный модуль расчета критериев оценки релевантности текстовых
отзывов………………………………………………………………………………………………………31
3.1Описание программного модуля……………………………………………………….. 31
3.2Апробация программного модуля………………………………………………………35
ЗАКЛЮЧЕНИЕ………………………………………………………………………………………….49
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………………………50

Сервисы анкетирования на сегодняшний день находят широкое
применение во многих областях деятельности, как с практической, так и с
научной точки зрения. Рассматривая механизм анкетирования студентов на
базе личного кабинета «Института космических и информационных
технологий», можно сказать о том, что анкетирование является одним из
непростых процессов механизма мониторинга образовательной среды.
Данный факт связан с тем, что в опросе определяющую роль играет
человеческий фактор. Именно в данном случае стоит более ответственно
подходить к анализу полученных результатов.
В случае, когда система анкетирования предусматривает возможность
дополнять числовую оценку текстовым комментарием, возникает задача
анализа текстовой части отзыва. Регулярная обработка результатов
практически всегда требует большое количество ресурсов, тем более если
данные представлены в свободной форме. Так же, не все отзывы можно
использовать как достоверную информацию. Проблема релевантности таких
результатов связанно с субъективным отношением человека и эмоциональным
фактором. Анализ текстовой части отзыва позволяет наиболее продуктивно
реализовывать обратную связь путем выделения числовых показателей
релевантности текста, используя современные методы машинного обучения.
Объектом исследования является сервис анкетирования студентов на

Не смотря на развитие современных IT-технологий, на текущий момент
нет совершенного алгоритма автоматического анализа текстов. Как правило,
любая задача из области классифицирования текстов отталкивается от
конечного результата, и успешность решения таких задач состоит из
правильного подбора технологий, например, технологий нормализации
данных перед машинным обучением и т.п.
В ходе работы по теме диссертации были проведены исследования по
выбору оптимальных технологий для автоматического анализа текстовых
отзывов сервиса анкетирования Сибирского федерального университета.
Прежде всего, были изучены аспекты нормализации данных. На практике,
рассмотрены стемминг и лемматизация текстов. Далее, были
проанализированы два метода автоматической классификации текстовых
отзывов: метод, основанный на машинном обучении и метод, основанный на
применении тональных словарей. В результате изучения метода с
применением машинного обучения, были рассмотрены пять математических
моделей.
По итогу работы, основываясь на результатах исследований, был
разработан модуль расчета критериев оценки релевантности текстовых
отзывов. По результатам апробации разработанного алгоритма был сделан
вывод о том, что выбранные технологии анализа являются оптимальными в
контексте решаемой задачи.

1. Даничев А.А., Якунин Ю.Ю. Аспектный анализ тональности
отзывов в образовательной среде // Информатизация образования и методика
электронного обучения Материалы III Международной научной конференции.
В двух частях. Сибирский федеральный университет, Институт космических и
информационных технологий. 2019. С. 61-65.
2. Обзорметодовклассификациивмашинномобучении
[Электронныйресурс].IT-портал«TProger.ru»–Режимдоступа:
https://tproger.ru/translations/scikit-learn-in-python/ (дата обращения 13.04.2020).
3. Документация модуля «Tree Tagger» [Электронный ресурс].
Режим доступа: https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
4. Документациябиблиотеки«nltk»,описаниестеммера
«SnowballStemmer» [Электронный ресурс]. IT-ресурс «kite» – Режим доступа:
https://kite.com/python/docs/nltk.SnowballStemmer
5. Онлайн-тезаурус русского языка «Карта слов» [Электронный
ресурс].–URL:https://github.com/dkulagin/kartaslov(датаобращения:
12.04.2020).
6. Описаниенаивногобайесовскогоалгоритмадля«Python»
[Электронныйресурс]:IT-ресурс«StackAbuse»–Режимдоступа:
https://stackabuse.com/the-naive-bayes-algorithm-in-python-with-scikit-learn/
7. Описание метода опорных векторов для «Python» [Электронный
ресурс]:IT-ресурс«StackAbuse»–Режимдоступа:
https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-
learn/
8. Описание метода k-средних [Электронный ресурс]: IT-портал
«data science» – Режим доступа: https://stackabuse.com/implementing-svm-and-
kernel-svm-with-pythons-scikit-learn/
9. Описаниеклассификаторадереварешенийдля«Python»
[Электронныйресурс]:IT-ресурс«StackAbuse»–Режимдоступа:
https://stackabuse.com/decision-trees-in-python-with-scikit-learn/
10. Описание метода логистической регрессии [Электронный ресурс]:
«Википедия»–Режимдоступа:https://ru.wikipedia.org/wiki/
Логистическая_регрессия
11. Глубоко аннотированный корпус русского языка [Электронный
ресурс]:«Википедия»–Режимдоступа:https://ru.wikipedia.org/wiki/
Глубоко_аннотированный_корпус_русского_языка
12. Документация модуля TreeTager для «Python» [Электронный
ресурс]: TreeTagger Python Wrapper’s documentation – Режим доступа:
https://stackabuse.com/decision-trees-in-python-with-scikit-learn/

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)