Оценка релевантности текстовых отзывов сервиса анкетирования

Высотенко, Егор Игоревич Базовая кафедра интеллектуальных систем управления
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ………………………………………………………………………………………………… 4
1 Теоретические основы расчета критериев оценки релевантности текстовых
отзывов………………………………………………………………………………………………………..6
1.1Сервис анкетирования студентов СФУ……………………………………………….. 6
1.2Критерии оценки релевантности текстовых отзывов…………………………… 7
1.3Методы нормализации текста………………………………………………………………8
1.3.1 Стемминг…………………………………………………………………………………….. 8
1.3.2 Лемматизация……………………………………………………………………………….9
1.4 Подходы к решению задачи автоматической классификации текстовых
отзывов………………………………………………………………………………………………………11
1.4.1 Методы, основанные на машинном обучении…………………………….. 11
1.4.2 Метод, основанный на словаре тональностей…………………………….. 17
2 Исследование и выбор методов классификации текстов…………………………..20
2.1Анализ и сравнение методов машинного обучения при расчете критерия
принадлежности…………………………………………………………………………………………24
2.1.1 Предобработка данных………………………………………………………………. 24
2.1.2 Машинное обучение……………………………………………………………………25
2.2Анализ и сравнение методов нормализации при расчете критерия
тональной принадлежности словарным подходом………………………………………28
3 Программный модуль расчета критериев оценки релевантности текстовых
отзывов………………………………………………………………………………………………………31
3.1Описание программного модуля……………………………………………………….. 31
3.2Апробация программного модуля………………………………………………………35
ЗАКЛЮЧЕНИЕ………………………………………………………………………………………….49
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ………………………………………50

Сервисы анкетирования на сегодняшний день находят широкое
применение во многих областях деятельности, как с практической, так и с
научной точки зрения. Рассматривая механизм анкетирования студентов на
базе личного кабинета «Института космических и информационных
технологий», можно сказать о том, что анкетирование является одним из
непростых процессов механизма мониторинга образовательной среды.
Данный факт связан с тем, что в опросе определяющую роль играет
человеческий фактор. Именно в данном случае стоит более ответственно
подходить к анализу полученных результатов.
В случае, когда система анкетирования предусматривает возможность
дополнять числовую оценку текстовым комментарием, возникает задача
анализа текстовой части отзыва. Регулярная обработка результатов
практически всегда требует большое количество ресурсов, тем более если
данные представлены в свободной форме. Так же, не все отзывы можно
использовать как достоверную информацию. Проблема релевантности таких
результатов связанно с субъективным отношением человека и эмоциональным
фактором. Анализ текстовой части отзыва позволяет наиболее продуктивно
реализовывать обратную связь путем выделения числовых показателей
релевантности текста, используя современные методы машинного обучения.
Объектом исследования является сервис анкетирования студентов на

Не смотря на развитие современных IT-технологий, на текущий момент
нет совершенного алгоритма автоматического анализа текстов. Как правило,
любая задача из области классифицирования текстов отталкивается от
конечного результата, и успешность решения таких задач состоит из
правильного подбора технологий, например, технологий нормализации
данных перед машинным обучением и т.п.
В ходе работы по теме диссертации были проведены исследования по
выбору оптимальных технологий для автоматического анализа текстовых
отзывов сервиса анкетирования Сибирского федерального университета.
Прежде всего, были изучены аспекты нормализации данных. На практике,
рассмотрены стемминг и лемматизация текстов. Далее, были
проанализированы два метода автоматической классификации текстовых
отзывов: метод, основанный на машинном обучении и метод, основанный на
применении тональных словарей. В результате изучения метода с
применением машинного обучения, были рассмотрены пять математических
моделей.
По итогу работы, основываясь на результатах исследований, был
разработан модуль расчета критериев оценки релевантности текстовых
отзывов. По результатам апробации разработанного алгоритма был сделан
вывод о том, что выбранные технологии анализа являются оптимальными в
контексте решаемой задачи.

1. Даничев А.А., Якунин Ю.Ю. Аспектный анализ тональности
отзывов в образовательной среде // Информатизация образования и методика
электронного обучения Материалы III Международной научной конференции.
В двух частях. Сибирский федеральный университет, Институт космических и
информационных технологий. 2019. С. 61-65.
2. Обзорметодовклассификациивмашинномобучении
[Электронныйресурс].IT-портал«TProger.ru»–Режимдоступа:
https://tproger.ru/translations/scikit-learn-in-python/ (дата обращения 13.04.2020).
3. Документация модуля «Tree Tagger» [Электронный ресурс].
Режим доступа: https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
4. Документациябиблиотеки«nltk»,описаниестеммера
«SnowballStemmer» [Электронный ресурс]. IT-ресурс «kite» – Режим доступа:
https://kite.com/python/docs/nltk.SnowballStemmer
5. Онлайн-тезаурус русского языка «Карта слов» [Электронный
ресурс].–URL:https://github.com/dkulagin/kartaslov(датаобращения:
12.04.2020).
6. Описаниенаивногобайесовскогоалгоритмадля«Python»
[Электронныйресурс]:IT-ресурс«StackAbuse»–Режимдоступа:
https://stackabuse.com/the-naive-bayes-algorithm-in-python-with-scikit-learn/
7. Описание метода опорных векторов для «Python» [Электронный
ресурс]:IT-ресурс«StackAbuse»–Режимдоступа:
https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-
learn/
8. Описание метода k-средних [Электронный ресурс]: IT-портал
«data science» – Режим доступа: https://stackabuse.com/implementing-svm-and-
kernel-svm-with-pythons-scikit-learn/
9. Описаниеклассификаторадереварешенийдля«Python»
[Электронныйресурс]:IT-ресурс«StackAbuse»–Режимдоступа:
https://stackabuse.com/decision-trees-in-python-with-scikit-learn/
10. Описание метода логистической регрессии [Электронный ресурс]:
«Википедия»–Режимдоступа:https://ru.wikipedia.org/wiki/
Логистическая_регрессия
11. Глубоко аннотированный корпус русского языка [Электронный
ресурс]:«Википедия»–Режимдоступа:https://ru.wikipedia.org/wiki/
Глубоко_аннотированный_корпус_русского_языка
12. Документация модуля TreeTager для «Python» [Электронный
ресурс]: TreeTagger Python Wrapper’s documentation – Режим доступа:
https://stackabuse.com/decision-trees-in-python-with-scikit-learn/

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)