Влияние параметров режима импульсной лазерной сварки на формирование герметичного соединения из сплава АМг3, имеющего никелевое напыление

Сигагин, Михаил Михайлович Отделение электронной инженерии (ОЭИ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной магистерской диссертации была разработана технология импульсной лазерной сварки, позволяющей сформировать герметичное соединение из алюминиево-магниевого сплава АМг3 с никелевым покрытием.

Введение ………………………………………………………………………………………………….. 13
1 Анализ методов и способов сварки алюминиевых сплавов …………………….. 15
1.1 Особенности сварки алюминиевых сплавов ……………………………………… 15
1.2 Способы сварки алюминиевых сплавов ……………………………………………. 17
1.2.1 Газовая сварка ……………………………………………………………………………. 18
1.2.2 Сварка угольным (графитовым) электродом ……………………………….. 19
1.2.3 Сварка металлическим покрытым электродом…………………………….. 20
1.2.4 Сварка плавящимся электродом в инертных газах ………………………. 21
1.2.5 Сварка неплавящимся вольфрамовым электродом в инертных газах
…………………………………………………………………………………………………………… 25
1.2.6 Плазменная сварка сжатой дугой постоянным током обратной
полярности …………………………………………………………………………………………. 27
1.2.7 Микроплазменная сварка ……………………………………………………………. 28
1.2.8 Электроннолучевая сварка………………………………………………………….. 30
1.2.9 Лазерная сварка ………………………………………………………………………….. 30
2 Материалы и методы исследования ……………………………………………………….. 32
3 Экспериментальная часть ………………………………………………………………………. 35
4 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение … 44
1.1 Потенциальные потребители результатов исследования …………………… 44
1.2 Анализ конкурентных технических решений ……………………………………. 45
1.3 SWOT – анализ ………………………………………………………………………………… 48
1.4 Оценка готовности проекта к коммерциализации ……………………………… 52
1.5 Методы коммерциализации результатов научно-технического
исследования ………………………………………………………………………………………… 54
1.6 Ограничения проекта ……………………………………………………………………….. 55
1.7 План проекта……………………………………………………………………………………. 56
1.8 Обоснование необходимых инвестиций для разработки и внедрения ИР
……………………………………………………………………………………………………………… 58
1.8.1 Расчет материальных затрат НТИ ……………………………………………….. 58
1.8.2 Основная заработная плата …………………………………………………………. 59
1.8.3 Дополнительная заработная плата научно-производственного
персонала …………………………………………………………………………………………… 61
1.8.4 Отчисления на социальные нужды ……………………………………………… 62
1.8.5 Накладные расходы ……………………………………………………………………. 63
1.9 Определение ресурсной, финансовой, бюджетной, социальной и
экономической эффективности исследования ………………………………………… 64
5 Социальная ответственность …………………………………………………………………. 68
5.1. Описание рабочего места ………………………………………………………………… 68
5.2. Анализ выявленных вредных факторов …………………………………………… 69
5.2.1 Шум в процессе сварки. ……………………………………………………………… 69
5.2.2 Освещенность рабочей зоны. ……………………………………………………… 70
5.2.3 Вредные вещества в воздухе рабочей зоны. ………………………………… 70
5.3 Анализ опасных факторов, создаваемых установкой при сварке ……….. 72
5.3.1 Электробезопасность. …………………………………………………………………. 72
5.3.2 Расчет защитного заземления. …………………………………………………….. 72
5.3.3 Опасные зоны подвижных частей оборудования. ………………………… 75
5.4 Мероприятия по обеспечению защиты исследователя от действия
опасных и вредных факторов ………………………………………………………………… 76
5.4.1 Мероприятия по обеспечению оптимального микроклимата ……….. 76
5.4.2 Мероприятия по обеспечению требований норм шума ………………… 76
5.4.3 Мероприятия по обеспечению требований норм освещенности …… 77
5.4.4 Мероприятия по обеспечению требований норм концентрации
вредных веществ в воздухе рабочей зоны……………………………………………. 77
5.4.5 Мероприятия по обеспечению требований норм элетробезопасности
…………………………………………………………………………………………………………… 77
5.4.6 Мероприятия по обеспечению требований норм защиты от
подвижных частей оборудования………………………………………………………… 79
5.4.7 Мероприятия по обеспечению требований норм защиты брызг и
расплавленного металла ……………………………………………………………………… 79
5.5 Экологическая безопасность…………………………………………………………….. 79
5.6 Безопасность в чрезвычайных ситуациях …………………………………………. 82
5.7 Правовые и организационные вопросы обеспечения безопасности и
социальной защиты работников на предприятии ……………………………………. 85
5.8 Социальное страхование ………………………………………………………………….. 88
5.8.1 Пособие по временной нетрудоспособности ……………………………….. 90
5.8.2 Единовременные и ежемесячные выплаты ………………………………….. 90
Заключение ……………………………………………………………………………………………… 92
Список использованных источников ………………………………………………………… 93
Приложение А …………………………………………………………………………………………. 96

Алюминиевые сплавы отличаются сочетанием технологических и
эксплуатационных свойств:
 малые значения удельного веса;
 высокие механические свойства;
 высокие значения тепло- и электропроводности;
 хорошая технологическая обрабатываемость.
Кроме этих свойств алюминиевые сплавы обладают высокой
коррозионной стойкостью, что позволяет их использовать в различных
агрессивных средах.
Технология сварки алюминия и его сплавов имеет особенности в
сравнении со сваркой сталей по причине существенных отличий свойств этих
металлов. Алюминий и его сплавы обладает теплопроводностью примерно в 5
раз выше, чем у сталей, поэтому тепло от места сварки интенсивно отводится
в свариваемые детали, что требует повышенного тепловложения по
сравнению со сваркой сталей [1,2]. Это крайне нежелательно, поскольку,
алюминий отличается низкой температурой плавления, причем прочность его
при нагреве резко снижается. Таким образом, вероятность «прожога» или
расплавления детали при сварке алюминия существенно выше, чем при сварке
стали.
Наиболее распространенным методом соединения алюминиевых
деталей является ручная или автоматическая аргонодуговая сварка
неплавящимся электродом в среде защитного газа. Однако, соединения,
формируемые данным способом, не всегда могут отвечать требованиям к
высокой точности конструкции. Так, например, при изготовлении
высокоточных деталей оборонной промышленности требуется формирование
швов с низким коэффициентом формы, которые при этом могли обеспечивать
требуемое качество и герметичность.
В связи с этим в настоящее время активно разрабатываются и
внедряются в производство лазерные технологии соединения металлов и
сплавов. Импульсная лазерная сварка деталей, к которым предъявляются
требования высокой точности, является перспективным методом за счет таких
преимуществ:
 высокая плотность мощности излучения;
 локальность проплавления;
 формирование узкого шва достаточно большой глубины.
Сверхвысокие скорости нагрева и охлаждения после лазерного
воздействия сокращают ширину зон термического влияния, а также снижают
степень газонасыщения сплавов, особенно при выполнении защиты зон
сварочной ванны и термического влияния инертными газами [2].
Однако даже при лазерной сварке существуют определенные проблемы
получения прочных соединений алюминиевых сплавов. Это. прежде всего,
быстрое образование оксидов на поверхности. поглощение газов из
окружающей среды, высокая отражающая способностью алюминиевых
сплавов.
В настоящее время текущие проблемы решаются на предприятиях
применительно к конкретным конструкциям. Особый интерес представляет
разработка технологии импульсной лазерной сварки для соединения
корпусных элементов электронной аппаратуры, обеспечивающих
герметичность и прочность соединения.
Целью данной работы является разработка технологии импульсной
лазерной сварки, позволяющей сформировать герметичное соединение из
алюминиево–магниевого сплава АМг3 способом импульсной лазерной
сварки.
1 Анализ методов и способов сварки алюминиевых сплавов

Заключение

В ходе выполнения теоретической части магистерской диссертации
был проведен литературный обзор, в котором были особенности и основные
способы сварки алюминиевых сплавов.
В ходе литературного обзора было показано, что для герметизации
является способ импульсной лазерной сварки.
В результате экспериментального исследования было установлено:
1) Высота сварного шва при импульсной лазерной сварке
уменьшается при уменьшении напряжения и длительности импульса.
2) Наиболее высокий сварной шов достигается при параметрах
режима сварки на образце № 1.
3) Для образцов характерна пористость сварных швов.
4) На границе сплавления всех образцов наблюдается зарождение
трещин. При этом в сварных соединения образцов интенсивного развития
трещин не происходит вследствие оплавления слоя никеля и заполнения им
пространства на границе раздела двух пластин.
5) Анализ распределения микротвердости по толщине сварного шва
свидетельствует об увеличении твердости при переходе с металла шва на
основной метал.
В результате проделанной работы были выданы рекомендации по
сварке алюминиевых сплавов АМг3 с никелевым покрытием.
Результаты данного исследования рекомендованы для выполнения
сварных соединений на предприятие АО “НПЦ “Полюс”.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ

    Другие учебные работы по предмету

    Решение технологических проблем при обработке литого корпуса
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Повышение работоспособности торцовых фрез с механическим креплением режущих пластин
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка технологии изготовления деталей насос-дозатора с применением операции дорнования
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка технологии автоматической сварки под слоем флюса тавровых балок на установке Corimpex
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Разработка алгоритмов управления дугой горящей в динамическом режиме
    📅 2020год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)
    Электронно-лучевая сварка термоизолированной трубы
    📅 2021год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)