Распознавание образов на изображениях с использованием инструментов машинного обучения

Вторушина, Анна Сергеевна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Представлен программный комплекс, осуществляющий распознавание изображений и
рукописных символов с использованием машинного обучения и построенного по
архитектуре искусственных нейронных сетей. Проведен выбор оптимальных средств
синтеза и моделирования нейронной сети. Экспериментально определена оптимальная
архитектура нейросети для задачи распознавания рукописных числовых символов.
Представлены результаты сравнения точности и времени выполнения кода
нейросетевого алгоритма с использованием систем облачной обработки данных.

Введение…………………………………………………………………………………………… 17
1 Объект и методы исследования …………………………………………………… 20
2 Модель нейронной сети ………………………………………………………………. 21
2.1 Обзор литературы …………………………………………………………………. 21

2.2 Математическая концепция нейронной сети ………………………….. 23

2.3 Свойства нейронных сетей ……………………………………………………. 24

2.3.1 Выпрямленная линейная функция активации (rectified linear
unit, ReLU) 24

2.3.2 Функция активации Softmax …………………………………………….. 25

2.3.3 Метод градиентного спуска ……………………………………………… 26

2.3.4 Алгоритм обратного распространения ошибки ………………… 27

2.4 Описание сверточной нейронной сети …………………………………… 31

2.4.1 Сверточный слой …………………………………………………………….. 32

2.4.2 Шаг свертки …………………………………………………………………….. 34

2.4.3 Выбор максимального значения из соседних ……………………. 35

2.4.4 Подвыборочный слой ………………………………………………………. 36

2.4.5 Визуализация промежуточных активаций ………………………… 36

2.4.6 Полносвязанный слой ……………………………………………………… 37

2.4.7 DropOut слой …………………………………………………………………… 38

3 Выбор программных средств ………………………………………………………. 41
3.1 Выбор языка программирования ……………………………………………. 41

3.1.1 Python ……………………………………………………………………………… 41

3.1.2 Описание используемых библиотек и фреймворков …………. 42

3.2 Выбор среды программирования …………………………………………… 43
3.2.1 Pycharm …………………………………………………………………………… 44

3.3 Выбор облачных сервисов для оптимизации процесса …………… 46

3.3.1 Google Colaboratory………………………………………………………….. 46

3.3.2 Microsoft Aruze ………………………………………………………………… 46

3.3.3 AWS ………………………………………………………………………………… 47

4 Поведенческое моделирование нейронной сети …………………………… 48
4.1 Генераторы …………………………………………………………………………… 48

4.2 Расширение данных ………………………………………………………………. 50

4.3 Предварительно обученная нейронная сеть……………………………. 52

4.4 Архитектура программного обеспечения……………………………….. 53

4.5 Результаты эксперимента ………………………………………………………. 55

5 Оптимизация аппаратных ресурсов …………………………………………….. 62
5.1 Google Colaboratory ……………………………………………………………….. 62

5.2 Azure Machine Learning …………………………………………………………. 63

5.3 AWS ……………………………………………………………………………………… 64

6 Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение………………………………………………………………………………………. 66
6.1 Организация и планирование работ ……………………………………….. 66

6.1.1 Продолжительность этапов работ …………………………………….. 67

6.2 Расчет сметы затрат на выполнение проекта ………………………….. 70

6.2.1 Расчет затрат на материалы ……………………………………………… 70

6.2.2 Расчет заработной платы …………………………………………………. 71

6.2.3 Расчет затрат на социальный налог ………………………………….. 72

6.2.4 Расчет затрат на электроэнергию ……………………………………… 73

6.2.5 Расчет амортизационных расходов…………………………………… 74
6.2.6 Расчет прочих расходов …………………………………………………… 75

6.2.7 Расчет общей себестоимости разработки………………………….. 75

Расчет прибыли, НДС и цены разработки НИР ………………… 76

6.3 Оценка экономической эффективности проекта …………………….. 76

6.4 Оценка научно-технического уровня НИР …………………………….. 78

6.5 Выводы по разделу ……………………………………………………………….. 80

7 Социальная ответственность……………………………………………………….. 81
7.1 Введение ………………………………………………………………………………. 81

7.2 Правовые и организационные вопросы обеспечения
безопасности ……………………………………………………………………………………………. 81

7.2.1 Требования к организации рабочих мест пользователей …… 83

7.3 Производственная безопасность ……………………………………………. 84

7.3.1 Анализ опасных и вредных производственных факторов
Опасные и вредные производственные факторы, обладающие свойствами
психофизиологического воздействия ……………………………………………………. 86

7.3.1.1 Опасные и вредные производственные факторы,
связанные с аномальными микроклиматическими параметрами ………… 87

7.3.1.2 Опасные и вредные производственные факторы,
связанные с повышенным уровнем характеристик шумового воздействия
7.3.1.3 Опасные и вредные производственные факторы,
связанные с электрическим током……………………………………………………… 90

7.3.1.4 Опасные и вредные производственные факторы,
связанные с электромагнитными полями …………………………………………… 91

7.3.1.5 Опасные и вредные производственные факторы,
связанные со световой средой …………………………………………………………… 92
7.4 Экологическая безопасность …………………………………………………. 96

7.5 Безопасность в чрезвычайных ситуациях ………………………………. 97

7.6 Выводы по разделу ……………………………………………………………….. 98

Заключение ………………………………………………………………………………………. 99
Список публикаций…………………………………………………………………………. 100
Список используемой литературы …………………………………………………… 101
Приложение А ………………………………………………………………………………… 105
Приложение Б …………………………………………………………………………………. 121

Данная работа посвящена разработке методов и алгоритмов, входящих в
программный комплекс, осуществляющий распознавание изображений и
рукописных символов с использованием машинного обучения и построенного
по архитектуре искусственных нейронных сетей. В работе поднимаются
вопросы сложности обучения сети, ее возможного переобучения, а также
предлагаются варианты решения проблемы низкой производительности путем
оптимизации архитектуры сети и аппаратных ресурсов с применением
облачных сервисов обработки данных. В процессе исследования проведен
сравнительный анализ результатов обучения нейронной сети с применением
открытой библиотеки машинного обучения TensorFlow, библиотек Keras и
NumPy, а также набором данных из базы MNIST.
Актуальность данной темы исследования подтверждается массовым
внедрением компьютерных технологий и систем искусственного интеллекта
практически во все сферы человеческой деятельности такие как: системы видео
и аудио фиксации, поиск и обработка нецифровой информации, контроль
качества и другие, где требуется полная автоматизация процесса, повышение
качества, скорости выполнения задач. Фундаментальными исследованиями в
области нейронных сетей и распознавания образов занимался С. Хайкин. В его
трудах приводятся математическое обоснование нейросетевых алгоритмов,
примеров и описание компьютерных экспериментов по распознаванию образов,
управлению и обработке сигналов. Над задачами по визуальному анализу
данных работают научный национальный институт стандартов и технологий
(NIST), подразделение «Microsoft Research» и многие другие, которые
используют большое количество различных методов и практик для создания
новых нейросетевых алгоритмов, построенных в том числе и на сверточных
нейнонных сетях, так как они лучше подходят для задач визуального анализа
данных. Результаты таких исследований широко внедряются в современные
технологии оптико-электронных приборов и комплексов, ориентированных на
формирование и обработку цифровых изображений.
Одна из центральных проблем, которая должна быть разрешена с
помощью настоящего исследования — это проблема определения методов и
алгоритмов обработки информации на основе которых могли бы производиться
создание и направленная оптимизация инструментов решения поставленной
задачи. Таким образом, исходя из актуальности темы, задача настоящего
исследования направлена на разработку программного обеспечения для
распознавания рукописных цифр с использованием методов машинного
обучения.
Целью исследования является разработка автоматического метода
распознавания рукописных чисел, построенного на основе нейросетевого
алгоритма, а также синтез архитектуры нейронной сети и ее оптимизация, с
точки зрения ускорения и повышения точности распознавания цифровых
рукописных символов.
Предметом исследования в данной работе выступает оптимизация,
ускорение и повышение точности машинных систем распознавания образов.
Объектом исследования является созданная нейронная сеть, по
классификации относящаяся к типу сверточных нейросетей.
Научная новизна исследования заключается в создании оригинальной
архитектуры нейронной сети, построенной по принципу многослойности, и
относящаяся к типу сверточных, являющаяся вариацией многослойного
персептрона, где каждый слой содержит определенное количество рецептивных
полей.
Практическая значимости результатов исследования подтверждается
множеством публикаций по данной теме, а также повсеместным
использованием в повседневной жизни. Результаты работы могут быть
использованы в областях визуального анализа данных бумажной документации
какого-либо предприятия, где необходим перевод данных с бумажного
носителя в электронный вид.
Апробация работы проведена путем публикации научной работы
«Распознавание образов с использованием инструментов машинного обучения»
в журнале «Молодежь и современные информационные технологии».

В результате проделанной работы было проведено исследование
принципа работы сверточной нейронной сети и ее прикладное применения для
распознавания образов, в частности – рукописных цифр при помощи
современных методов машинного обучения. Разработано консольное
приложение на языке программирования Python для работы с данными из
открытой базы MNIST.
Архитектура сети для нейронной сети будет следующая:
– Чередующиеся слои свертки и подвыборки;
– Полносвязные слои для классификации;
– Техника с борьбы с переобучением(Dropout).
Разработанное приложение впоследствии может послужить отправной
точкой для разработки ядра более мощной программы распознавания
рукописного ввода, а именно связки цифр, символов (номера автомобилей,
почтовые индексы и т.д.).
Список публикаций

1. А.С. Вторушина, И.А. Ботыгин Распознавание рукописных цифр на
изображениях с использованием инструментов машинного обучения /
Молодежь и современные информационные технологии: сборник трудов XVII
Международной научно-практической конференции студентов, аспирантов и
молодых ученых (Томск, 17–20 февраля 2020 г.) / Томский политехнический
университет. – Томск: Изд-во Томского политехнического университета, 2020.
– 458 с.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ

    Другие учебные работы по предмету