Автоматизация подготовки обучающего набора для классификации похожих изображений

Патин Михаил Владиславович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Существуют методы, которые позволяют, хоть и при использовании в ограниченном круге задач компьютерного зрения, получить информацию об общем характере изображений. Данные методы основаны на поиске особенностей изображений – особых точек и дескрипторов. Их идея разработана достаточно давно, но даже сейчас они применяются во многих сферах, связанных с обработкой изображений. Для их использования в задаче классификации необходимо систематизировать и выделить общие черты дескрипторов, присущих определенным типам изображений. В рамках рассматриваемой области исследований под общими чертами можно представить некие слова, совокупность которых и будет описывать характер изображений одного типа. Некоторый набор таких слов по всем необходимым типам образует словарь визуальных слов. Предполагается, что использование алгоритмов классификации позволит выделить слова, присущих определенным типам изображений для дальнейшей классификации неизвестных изображений по определенным типам. В данной работе рассматривается приложение, основанном на комплексе существующих методов компьютерного зрения, которое позволяет упростить процесс формирования обучающей выборки, из необходимых типов изображений, для дальнейшего его использования в различных задачах. Так же приведены исследования результатов работы программы при использовании таких алгоритмов как ORB, BRISK, AKAZE осуществляющих поиск особенностей изображения в виде особых точек и их дескрипторов.

В век стремительного развития цифровых технологий, когда объёмы информации растут громадными темпами, многие IT компании стремятся автоматизировать процессы для ее обработки, создавая сложные, высоконагруженные программные и аппаратные комплексы.
В последние время для задач анализа данных быстрыми шагами развивается направление нейронных сетей, позволяющие получить сравнимые с человеком результаты в различных сферах. Но для достижения этих показателей требуется приложить не малые усилия, так как не существует алгоритма определяющего оптимальную архитектуру нейронной сети для конкретной задачи. Проектирование сети требует работы высококвалифицированного в данной области персонала, а также огромных как аппаратных, так и материальных средств, что может позволить себе не каждая современная компания.
Но недостаточно просто смоделировать архитектуру нейронной сети, ведь перед ее использованием так же необходима стадия обучения. Данная стадия предполагает наличие заранее известных начальных значений и предполагаемых конечных результатов. Формирование обучающих выборок так же требует не малых человеческих затрат. Данную проблему можно увидеть на актуальной на сегодняшний день задаче обработке изображений. Ведь в текущее время, почти у каждого современного человека имеется мобильное устройство, с помощью которого люди создают тысячи и миллионы фотографий каждый день. И для создания необходимой обучающей выборки, по которой возможно обучить спроектированную нейронную сеть или иной инструмент, позволяющий анализировать изображения, приходиться использовать кропотливый и малооплачиваемый ручной труд простых людей.
В данной работе предлагается разработать приложение, автоматизирующее данный процесс и обладающее необходимым функционалом, позволяющим без использования огромного массива данных и при умеренных вычислительных затратах, осуществить первичную классификацию изображений с высокой точностью. Тем самым позволив существенно сократить общее время на подготовку обучающей выборки.
Существуют методы, которые позволяют, хоть и при использовании в ограниченном круге задач компьютерного зрения, получить информацию об общем характере изображений. Данные методы основаны на поиске особенностей изображений – особых точек и дескрипторов. Их идея разработана достаточно давно, но даже сейчас они применяются во многих сферах, связанных с обработкой изображений. Для их использования в задаче классификации необходимо систематизировать и выделить общие черты дескрипторов, присущих определенным типам изображений.
В рамках рассматриваемой области исследований под общими чертами можно представить некие слова, совокупность которых и будет описывать характер изображений одного типа. Некоторый набор таких слов по всем необходимым типам образует словарь визуальных слов. Предполагается, что использование алгоритмов классификации позволит выделить слова, присущих определенным типам изображений для дальнейшей классификации неизвестных изображений по определенным типам.
Данная работа является продолжением исследований в области алгоритмов поиска особых точек и дескрипторов, описанных в бакалаврской работе автора: “Сравнительный анализ дескрипторов особых точек изображений с внедрением алгоритмов под операционной системой «Android»”. В данной работе предлагается сравнить результаты их применения в задаче классификации изображений, используя словарь визуальных слов.

В данной работе был проведен сравнительный анализ методов поиска особых точек и их дескрипторов на основе результатов кластеризации. Для достижения поставленной задачи была разработана программа для стационарных устройств на языке Java, обладающая всем требуемым функционалом:
Реализацию методов ORB, BRISK, AKAZE.
Формирование словаря.
Обучение алгоритма кластеризации.
Сортировка изображений по заданным группам.
Настройка параметров программы и алгоритмов.
Корректировка групп изображений
Сохранение результатов
Были проведены сравнительные тесты работы алгоритмов.
В результате выделен наилучший метод поиска особенностей, при кластеризации изображений.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary Bradski: “ORB: an efficient alternative to SIFT or SURF”, Computer Vision (ICCV), IEEE International Conference on. IEEE, pp. 2564 – 2571, 2011.
Stefan Leutenegger, Margarita Chli, Roland Siegwart: “BRISK: Binary Robust Invariant Scalable Keypoints”. Computer Vision (ICCV), pp. 2548 – 2555, 2011.
Pablo F. Alcantarilla, Jesús Nuevo, Adrien Bartoli: “Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces”. In British Machine Vision Conference (BMVC), 2013.
Rosten, Edward, Tom Drummond: “Machine learning for high-speed corner detection”, 9th European Conference on Computer Vision (ECCV), pp. 430 – 443, 2006.
Michael Calonder, Vincent Lepetit, Christoph Strecha, Pascal Fua, “BRIEF: Binary Robust Independent Elementary Features”, 11th European Conference on Computer Vision (ECCV), pp. 778 – 792, 2010.
S. Grewenig, J. Weickert, C. Schroers, A. Bruhn: “Cyclic Schemes for PDE-Based Image Analysis”, In International Journal of Computer Vision, 2013. 
X. Yang, K. T. Cheng: “LDB: An ultra-fast feature for scalable augmented reality”. In IEEE and ACM Intl. Sym. on Mixed and Augmented Reality (ISMAR), pp. 49 – 57, 2012.
, : “A Text Retrieval Approach to Object Matching in Videos”
Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray: “Visual Categorization with Bags of Keypoints”, 2004.
David Arthur, Sergei Vassilvitskii: “k-means++: the advantages of careful seeding.” Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics Philadelphia, PA, USA. pp. 1027–1035, 2007. 
C. Burges: “A Tutorial on Support Vector Machines for Pattern Recognition
Annalisa Barla, Francesca Odone, Alessandro Verri: “Histogram intersection kernel for image classification.” Proceedings of International Conference on Image Processing 2003, Vol. 2(1) , pp. 513, 2003
OpenCV: http://opencv.org

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет