Обработка изображений с помощью методов машинного обучения

Авдеенко Дмитрий Юрьевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В результате данной выпускной квалификационной работы изучены различные методы машинного обучения для анализа изображений, области их применения и способы решения задач данными методами. Решена задача распознавания и сегментирования дефектов на изображениях стальных изделий. В практической части работы предложено несколько подходов для решения поставленной задачи, реализованы некоторые модели на языке Python.

Введение 3

Постановка задачи 4

Обзор литературы 5

1. Обзор технологий и подходов в решении задачи 6
1.1. U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2. SENet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3. PSPNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4. Rectified Adam оптимизация . . . . . . . . . . . . . . . . . 10
1.5. Коэффициент Жаккара . . . . . . . . . . . . . . . . . . . 12
1.6. Псевдо-маркировка данных . . . . . . . . . . . . . . . . . 12

2. Данные 13

3. Модель решения 18

4. Исследование 21
4.1. Подготовка данных и инструментария для исследования 21
4.2. Многоклассовая классификация . . . . . . . . . . . . . . . 21
4.3. Многоклассовая сегментация . . . . . . . . . . . . . . . . 23
4.4. Бинарная сегментация . . . . . . . . . . . . . . . . . . . . 25
4.5. Результаты . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Выводы 29

Заключение 30

Список литературы 31

Сталь является одним из важнейших строительных материалов со-
временности. Стальные изделия устойчивы к естественному и искус-
ственному износам, что поспособствовало популярности данного мате-
риала во всем мире. Компания Северсталь лидирует в сфере добычи и
производства стали и считает, что будущее металлургии требует раз-
вития в экономических, экологических и социальных аспектах отрасли,
а также серьезно относится к корпоративной ответственности. Недав-
но компания создала крупнейшее в стране хранилище промышленных
данных с петабайтами информации, которая ранее никак не изучалась.
В настоящее время Северсталь ищет возможности в области машинного
обучения для улучшения автоматизации, повышения эффективности и
поддержания высокого качества своей продукции.
Процесс производства листовой стали особенно деликатный. От на-
грева и прокатки до сушки и резки – к моменту готовности листа стали
несколько машин соприкасаются с ним. Сегодня Северсталь использу-
ет изображения с высокочастотных камер для алгоритма обнаружения
дефектов.
Основной идей данной работы было создание алгоритма для авто-
матического анализа, локализации и классификации поверхностных де-
фектов на стальном листе.
Постановка задачи
Цель этого исследования – предсказать местоположение и тип де-
фектов, обнаруженных при производстве стали, используя предостав-
ленные изображения. Названия изображений имеют уникальный иден-
тификатор, и задача состоит в том, чтобы сегментировать каждое изоб-
ражение и классифицировать дефекты в наборе тестовых данных.
Даны обучающая выборка состоящая из 12568 уникальных изобра-
жений и тестовая выборка, состоящая из 1801 изображения. Так же
предлагается текстовый файл, с информацией о дефекте на каждом
изображении.

Целью данной выпускной квалификационной работы являлись ис-
следование задачи обнаружения дефектов на листах стали, а также
практическая реализация модели решения на языке Python с исполь-
зованием фреймворков и библиотек глубокого обучения.
На первом этапе были формально определены задача и исходные
данные для дальнейшего исследования. Произведено подробное опи-
сание изображений, представленных в качестве обучающей и тестовой
выборок. Исследованы структура выборок, распределение изображений
по классам, отличия классов дефектов.
Представлено несколько моделей, которые были использованы для
решения данной задачи, описаны их недостатки и особенности приме-
нения, а также выбрана модель для практической реализации.
На следующем этапе была программно реализована модель и по-
дробно описаны алгоритмы для каждой части полученного решения.
Заключительным этапом стали подведение итогов и оценка качества
предсказаний построенной модели.
В результате данной выпускной квалификационной работы изуче-
ны различные методы машинного обучения для анализа изображений,
области их применения и способы решения задач данными методами.
Подробно проанализирована и описана задача обнаружения дефектов
на листах стали от компании Северсталь. В практической части выпуск-
ной квалификационной работы предложено несколько подходов для ре-
шения поставленной задачи, реализовано несколько моделей на языке
Python.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет