Нейросетевой расчёт динамических показателей

Беляев Василий Андреевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе рассматривается подход расчёта динамических характеристик существенно нелинейных динамических процессов. Часто для таких процессов математические модели или не определены или задаются недостаточно точно, но сами данные наблюдения динамики этих явлений могут быть доступны в виде временных рядов. Показан метод построения нейронной сети, которая может по данным наблюдения рассчитывать важные динамические характеристики, в том числе такие как старший показатель Ляпунова — мера наличия хаотических режимов поведения.

Введение 3

Постановка задачи 8

Обзор литературы 9

Глава 1. Хаотическая динамика нелинейных процессов 12
1.1. Динамический параметр хаотического поведения движений . 12
1.2. Анализ старшего показателя Ляпунова по наблюдениям . . . 15

Глава 2. Исследование динамики нелинейных систем 17
2.1. Математическая модель одной нелинейной системы . . . . . . 17
2.2. Восстановление фазовой динамики по наблюдательным данным 19

Глава 3. Нейросетевое вычисление параметров хаотической
динамики 22
3.1. Нейросетевой анализ старшего показателя Ляпунова по на-
блюдениям . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Определение параметров динамики для регулярных и не ре-
гулярных типов движений . . . . . . . . . . . . . . . . . . . . 24

Выводы 26

Заключение 27

Список литературы 28

Приложение 31

Нейронная сеть — это тип машинного обучения, который моделирует
себя в качестве человеческого мозга. Это создает искусственную нейронную
сеть, которая с помощью алгоритма позволяет компьютеру учиться путем
включения новых данных. Хотя в наши дни существует множество алго-
ритмов искусственного интеллекта, нейронные сети способны выполнять
то, что называют глубоким обучением. В то время как основной единицей
мозга является нейрон, основным строительным блоком искусственной ней-
ронной сети является персептрон, который выполняет простую обработку
сигналов, и они затем соединяются в большую ячеистую сеть. Компьютер
с нейронной сетью учат выполнять задачу, анализируя обучающие при-
меры, которые были предварительно подготовлены. Типичным примером
задачи для нейронной сети, использующее глубокое обучение, является за-
дача распознавания объектов, где нейронная сеть представлена большим
количеством объектов определенного типа, таких как кошка или дорожный
знак, и компьютер, анализируя повторяющиеся шаблоны в представленных
изображениях, учится классифицировать новые изображения.
В свою очередь, под рекуррентными сетями подразумеваются нейрон-
ные сети, в которых присутствуют направленные последовательности при
соединении элементов. Это их свойство даёт возможность обрабатывать
серии событий во времени или в последовательных цепях пространства.
Рекурсивные сети способны использовать внутреннюю память при обра-
ботке последовательностей произвольной длины, что неспособны делать в
большинстве своём многослойные перцептроны. Как итог, сети RNN при-
менимы в задачах, требующих деления чего-то интегрального на части:
распознавание рукописного ввода или речи. Для этих сетей придумано
большое количество алгоритмов различной сложности. В последние годы
наиболее широко используется сеть с долговременной и кратковременной
памятью (LSTM) и контролируемой рекуррентной единицей (GRU).
В качестве примера рассмотрим простейшую нейросеть — перцеп-
трон. Он представляет собой один слой нейронов, принимающих входные
данные (один или несколько битов, действительных чисел, пикселей и т.п.),
модифицирующих их с учетом собственного веса и передающих далее. В
однослойном перцептроне выдача всех нейронов объединяется различными
Рис. 1: Модель рекуррентной нейронной сети

Главной целью данной работы было разработка и реализация ней-
росетевого метода вычисления динамических параметров (старший пока-
затель Ляпунова) на базе рассмотренной модели нелинейной динамики с
хаотическими режимами.
Основные результаты представленной дипломной работы:

• Предложен метод создания нейронной сети для работы с временными
рядами наблюдательных данных;

• Рассмотрена класс существенно нелинейных динамических систем с
возможными как регулярными, так и хаотическими типами траекто-
рий;

• Рассчитан старший показатель Ляпунова в локальной области фазо-
вого пространства;

• Определены возможные набора параметров указанной системы, от-
вечающих регулярным и хаотическим типам движений.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет