Нейросетевой расчёт динамических показателей

Беляев Василий Андреевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе рассматривается подход расчёта динамических характеристик существенно нелинейных динамических процессов. Часто для таких процессов математические модели или не определены или задаются недостаточно точно, но сами данные наблюдения динамики этих явлений могут быть доступны в виде временных рядов. Показан метод построения нейронной сети, которая может по данным наблюдения рассчитывать важные динамические характеристики, в том числе такие как старший показатель Ляпунова — мера наличия хаотических режимов поведения.

Введение 3

Постановка задачи 8

Обзор литературы 9

Глава 1. Хаотическая динамика нелинейных процессов 12
1.1. Динамический параметр хаотического поведения движений . 12
1.2. Анализ старшего показателя Ляпунова по наблюдениям . . . 15

Глава 2. Исследование динамики нелинейных систем 17
2.1. Математическая модель одной нелинейной системы . . . . . . 17
2.2. Восстановление фазовой динамики по наблюдательным данным 19

Глава 3. Нейросетевое вычисление параметров хаотической
динамики 22
3.1. Нейросетевой анализ старшего показателя Ляпунова по на-
блюдениям . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Определение параметров динамики для регулярных и не ре-
гулярных типов движений . . . . . . . . . . . . . . . . . . . . 24

Выводы 26

Заключение 27

Список литературы 28

Приложение 31

Нейронная сеть — это тип машинного обучения, который моделирует
себя в качестве человеческого мозга. Это создает искусственную нейронную
сеть, которая с помощью алгоритма позволяет компьютеру учиться путем
включения новых данных. Хотя в наши дни существует множество алго-
ритмов искусственного интеллекта, нейронные сети способны выполнять
то, что называют глубоким обучением. В то время как основной единицей
мозга является нейрон, основным строительным блоком искусственной ней-
ронной сети является персептрон, который выполняет простую обработку
сигналов, и они затем соединяются в большую ячеистую сеть. Компьютер
с нейронной сетью учат выполнять задачу, анализируя обучающие при-
меры, которые были предварительно подготовлены. Типичным примером
задачи для нейронной сети, использующее глубокое обучение, является за-
дача распознавания объектов, где нейронная сеть представлена большим
количеством объектов определенного типа, таких как кошка или дорожный
знак, и компьютер, анализируя повторяющиеся шаблоны в представленных
изображениях, учится классифицировать новые изображения.
В свою очередь, под рекуррентными сетями подразумеваются нейрон-
ные сети, в которых присутствуют направленные последовательности при
соединении элементов. Это их свойство даёт возможность обрабатывать
серии событий во времени или в последовательных цепях пространства.
Рекурсивные сети способны использовать внутреннюю память при обра-
ботке последовательностей произвольной длины, что неспособны делать в
большинстве своём многослойные перцептроны. Как итог, сети RNN при-
менимы в задачах, требующих деления чего-то интегрального на части:
распознавание рукописного ввода или речи. Для этих сетей придумано
большое количество алгоритмов различной сложности. В последние годы
наиболее широко используется сеть с долговременной и кратковременной
памятью (LSTM) и контролируемой рекуррентной единицей (GRU).
В качестве примера рассмотрим простейшую нейросеть — перцеп-
трон. Он представляет собой один слой нейронов, принимающих входные
данные (один или несколько битов, действительных чисел, пикселей и т.п.),
модифицирующих их с учетом собственного веса и передающих далее. В
однослойном перцептроне выдача всех нейронов объединяется различными
Рис. 1: Модель рекуррентной нейронной сети

Главной целью данной работы было разработка и реализация ней-
росетевого метода вычисления динамических параметров (старший пока-
затель Ляпунова) на базе рассмотренной модели нелинейной динамики с
хаотическими режимами.
Основные результаты представленной дипломной работы:

• Предложен метод создания нейронной сети для работы с временными
рядами наблюдательных данных;

• Рассмотрена класс существенно нелинейных динамических систем с
возможными как регулярными, так и хаотическими типами траекто-
рий;

• Рассчитан старший показатель Ляпунова в локальной области фазо-
вого пространства;

• Определены возможные набора параметров указанной системы, от-
вечающих регулярным и хаотическим типам движений.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет