Функционалы полного типа в задаче анализа устойчивости нелинейных дифференциально-разностных систем и их приложения

Кучкаров Ильдус Ильдарович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Исследуется устойчивость одного класса однородных дифференциально-разностных систем с линейно возрастающим запаздыванием. Получены достаточные условия устойчивости, асимптотической устойчивости. Также исследована робастная устойчивость и случай смешанного запаздывания.

Введение ……………………………. 3
Постановказадачи……………………….. 5
Обзорлитературы……………………….. 7
Глава1.МетодЛяпунова-Красовского …………….. 9
1.1Описаниеметода …………………….. 9
1.2Достаточныеусловияустойчивости……………. 10
Глава2.МетодЛяпунова-Разумихина……………… 13
2.1Вспомогательныеутверждения ……………… 13
2.2 Достаточные условия асимптотической устойчивости . . . . . . 15
2.3Исследованиеробастности ………………… 18
2.4Случайсмешанногозапаздывания ……………. 20
Выводы…………………………….. 23
Заключение…………………………… 23
Списоклитературы ………………………. 24

Многие математические модели в естественных науках, инженерии и эконо- мике описываются с помощью дифференциальных уравнений. Обыкновен- ные дифференциальные уравнения подразумевают зависимость скорости от текущего состояния объекта и, быть может, момента времени. Одна- ко скорость некоторых процессов зависит не только от текущего, но и от некоторого предыдущего состояния.
Например, известно [2], что обыкновенное дифференциальное уравне- ние П. Ф. Ферхюльста хорошо описывает динамику популяции простейших микроорганизмов, но не подходит для моделирования численности боль- шинства млекопитающих. Этот процесс описывается уже дифференциаль- но-разностным уравнением, которое предложил Г. Хатчинсон [14], запазды- вание в нем учитывает тот факт, что особь полноценно вступает во внут- ривидовую конкуренцию при достижении репродуктивного возраста.
Для таких математических моделей исследуют устойчивость по Ля- пунову [8] положений равновесия. Для этого анализируют, как изменяется траектория движения при малых изменениях начальных данных от поло- жения равновесия. Это позволяет анализировать и прогнозировать есте- ственные процессы, проектировать надежные системы, строить стабилизи- рующие управления объектами и решать другие задачи.
Часто математическая модель задана системой дифференциальных уравнений, которые затруднительно проинтегрировать аналитически. В та- ком случае рассматривают некоторое приближение системы в окрестности положения равновесия. Доказано [8], что при выполнении определенных условий свойства устойчивости совпадают для исходной и приближенной систем, поэтому разумно исследовать свойства аппроксимирующих систем.
Наиболее изученным классом таких систем являются линейные си- стемы дифференциальных уравнений. Для них известны способы построе- ния решений и критерии устойчивости. Однако возможна ситуация, когда первое в широком смысле приближение не содержит линейных членов, в этом случае появляются однородные уравнения порядка выше 1.
Для анализа устойчивости в работе используется прямой метод Ля- пунова. Рассматриваются два способа обобщения этого метода на диф-
3
ференциально-разностные системы: подход Н. Н. Красовского [7] и подход Б. С. Разумихина [10]. Красовский предложил рассматривать функциона- лы, зависящие от участка траектории. Этот подход позволяет получить критерий устойчивости и является более общим, но функционалы исследо- вать сложнее, чем функции. Разумихин же предложил исследовать функ- ции, но рассматривать их производные вдоль непрерывных функций, удо- влетворяющих специальному условию. Этот подход позволяет получить лишь достаточные условия, но для некоторых классов систем осуществля- ется намного проще. В работе используются оба подхода.
Задержки в моделируемых процессах имеют разную природу, поэто- му в дифференциально-разностных уравнениях используются различные запаздывания. Широко распространено постоянное запаздывание, напри- мер, оно используется в уже упомянутой модели Хатчинсона. Кроме того, запаздывание может линейно возрастать с течением времени, например, при моделировании перемешивания содержимого смесительного бака [5], движения по кольцевой дороге [17] или работы информационного серве- ра [4].
В работе исследуется устойчивость одного класса однородных диф- ференциально-разностных систем с линейно возрастающим запаздывани- ем. Работа имеет следующую структуру. После введения идут постановка задачи и обзор литературы по данной теме. Далее следует основная часть, состоящая из двух глав. Первая глава посвящена подходу Красовского. В ней построен функционал Ляпунова-Красовского для одного однородного уравнения с линейно возрастающим запаздыванием, и на его основе получе- ны достаточные условия устойчивости нулевого решения этого уравнения. Во второй главе рассматривается подход Разумихина, и на его основе полу- чены достаточные условия асимптотической устойчивости нулевого реше- ния одной однородной системы с линейно возрастающим запаздыванием. Кроме того, во второй главе исследуются робастная устойчивость и систе- ма со смешанным запаздыванием. В конце работы представлены выводы и заключение.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет