Идентификация человека по биометрическим данным

Кисляков Владислав Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Задача идентификации человека по биометрическим данным актуальна в последние годы. Распознавание личности по изображению лица является одним из наиболее удобных способов идентификации, так как не требует близкого контакта человека с прибором и может проводиться без ведома объекта анализа, что бывает полезно для различных охранных структур. Так же существуют методы идентификации по отпечаткам пальцев, голосу, радужке глаза и анализам биоматериалов. Однако, они не обладают в полной мере указанными выше преимуществами.
Сверточные нейронные сети были наиболее успешным подходом к проблеме классификации изображений за последнее десятилетие. В последнее время несколько предварительно обученных сетей были опубликованы и стали открытыми. Все эти сети прошли обучение по большому количеству изображений лиц, собранных с онлайн-ресурсов, таких как the Internet Movie Database и результаты поиска Google.
Системы идентификации личности часто используются для проверки допуска человека к различным данным или объектам. Для систем, применяемых подобным образом важной характеристикой, является сведение к минимуму вероятности ложноположительных ответов, т.е. предоставление допуска лицам, немеющим такового.
В данной работе будут проанализированы предобученные свёрточные сети, использующиеся для идентификации человека по изображению лица и находящиеся в открытом доступе.

Введение 3
Постановка задачи 4
Глава 1. Теоретическое обоснование 5
Нейронные сети 5
Свёрточные нейронные сети 6
Методы предварительной обработки изображений 9
Оценка точности сети 10
Полный цикл идентификации 12
Глава 2. Описание исследуемых сетей 13
2.1 VGG 13
2.2 GoogleNet 13
2.3 Inception v3 15
2.4 ResNet 15
Глава 3. Методика исследования 17
3.1 Описание набора данных и подготовка его к использованию 17
3.2 Обработка ответов сети 17
Глава 4. Результаты анализа сетей 19
4.1 Результаты 19
4.2 Вывод 23
Заключение 24
Список литературы 25

Сверточные нейронные сети были наиболее успешным подходом к проблеме классификации изображений за последнее десятилетие. В последнее время несколько предварительно обученных сетей были опубликованы и стали открытыми. Все эти сети прошли обучение по большому количеству изображений лиц, собранных с онлайн-ресурсов, таких как the Internet Movie Database и результаты поиска Google.
Применение сверточных сетей не ограничивается решением задачи классификации. Так же им нашли применение в задачах сегментации изображений, что косвенно является задачей классификации, и идентификации человека по изображению лица [1].
Задача идентификации человека по биометрическим данным актуальна в последние годы. Распознавание личности по изображению лица является одним из наиболее удобных способов идентификации, так как не требует близкого контакта человека с прибором и может проводиться без ведома объекта анализа, что бывает полезно для различных охранных структур. Так же существуют методы идентификации по отпечаткам пальцев, голосу, радужке глаза и анализам биоматериалов. Однако, они не обладают в полной мере указанными выше преимуществами [4][16].
Системы идентификации личности часто используются для проверки допуска человека к различным данным или объектам. Для систем, применяемых подобным образом важной характеристикой, является сведение к минимуму вероятности ложноположительных ответов, т.е. предоставление допуска лицам, немеющим такового.
В данной работе будут проанализированы предобученные свёрточные сети, находящиеся в открытом доступе.

В результате исследования проведен сравнительный анализ работы находящихся в открытом доступе свёрточных сетей, применяемых в задаче идентификации человека по изображению лица, и выявить сеть, показавшую лучшие результаты точности решений и количества ложноположительных ответов. Ей оказалась сеть ResNet c наилучшим относительно других сетей результатом точности и меньшим количеством ложно положительных ошибок. Остальные сети также показали качественные результаты, однако количество ложно положительных ошибок полученных ими почти в три раза выше чем у ResNet, а этот показатель крайне важен для систем идентификации человека.
По полученным результатам так же можно сделать выводы о удачности архитектурных решений, применяемых в рассматриваемых сетях, и выбрать сети для включения их в коалицию для получения более качественных результатов. Так, например, VGG имея наиболее примитивную архитектуру (относительно рассматриваемых сетей) показала худший результат, Inception v3 являясь продолжением идей VGG и GoogleNet превзошла их, а ResNet, использующая пропускающие соединения, проказала лучший результат.

Lipton, Z. C., Berkowitz, J., and Elkan, C. (2015). A critical review of recurrent neural networks for sequence learning. arXiv preprint arXiv:1506.00019.
Huang GB, Jain V, Learned-Miller E. Unsupervised Joint Alignment of Complex Images. 2007 IEEE 11th International Conference on Computer Vision. 2007. pp. 1–8. doi:1​0.1109/ICCV .2007.4408858
D. Stansbury. Derivation: Derivatives for Common Neural Network Activation Functions. In: The Clever Machine [Internet].
K. Simonyan, A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
Сикорский О.С., МГТУ им. Н.Э. Баумана, Обзор свёрточных нейронных сетей для задачи классификации изображений.
V. Kazemi, J. Sullivan. One Millisecond Face Alignment with an Ensemble of Regression Trees. https://pdfs.semanticscholar.org/d78b/ 6a5b0dcaa81b1faea5fb0000045a62513567.pdf
DLib Library. http://dlib.net/
OpenCV Library. http://opencv.org/
PyTorch https://pytorch.org/
A. Krizhevsky, I. Sutskever, G.E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. https://papers.nips.cc/paper/ 4824-imagenet-classification-with-deep-convolutional-neural-networks. pdf
R. G. Cinbis, J. J. Verbeek, and C. Schmid. Unsupervised metric learning for face identification in TV video. In Proc. ICCV, pages 1559–1566, 2011.
Matthew D Zeiler, Rob Fergus. 2014. Visualizing and understanding convolutional networks. European conference on computer vision, pp. 818-833. Springer International Publishing.
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich. 2015. Going deeper with convolutions. The IEEE Conference on Computer Vision and Pattern Recognition, pp. 1-9
Geoffrey Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, Ruslan R Salakhutdinov. 2012. Improving neural networks by preventing co- adaptation of feature detectors. arXiv preprint arXiv:1207.0580
Ross Girshick. 2015. Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision, pp. 1440-1448.
Lee H, Grosse R, Ranganath R, Ng AY. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. Proceedings of the 26th Annual International Conference on Machine Learning. New York, NY, USA: ACM; 2009. pp. 609–616.
Review: DenseNet — Dense Convolutional Network (Image Classification)
Siebert Looije, University of Groningen, Pre-trained Deep Convolutional Neural Networks for Face Recognition
Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural networks? In Advances in neural information processing systems, pages 3320–3328.
Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks, 12(1):145–151.
Guo, Y., Zhang, L., Hu, Y., He, X., and Gao, J. (2016). Ms-celeb-1M: challenge of recognizing one million celebrities in the real world. Electronic Imaging, 2016(11):1–6.
MegaFace .
FEI Face Database
Sergey Ioffe, Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет