+7 (800) 505-67-97

Исследование и реализация метода синтеза вариационного автоэнкодера и генеративно-состязательных сетей в задачах создания новых медицинских данных

Бесплатно
Работа доступна по лицензии Creative Commons:«Attribution» 4.0
Лаптев, Владислав Витальевич Отделение информационных технологий (ОИТ)
Бесплатно
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе рассматривается решение задачи синтеза новых медицинских данных. Для решения поставленной задачи используются такие интеллектуальные алгоритмы, как: вариацианный автоэнкодер, генеративно-состязательные сети, а также коллаборация данных методов. В результате исследования выявлены плюсы и минусы каждого рассматриваемого алгоритма. Реализованные модели использованы в качестве метода расширения исходной выборки для обучения моделей анализа данных.

Введение…………………………………………………………………………………………. 10
1 Литературный обзор…………………………………………………………………… 13

1.1 Синтетические данные ………………………………………………………. 13
1.2 Аугментация данных …………………………………………………………. 14
1.3 Интеллектуальные алгоритмы ……………………………………………. 15
1.4 Вариационный автоэнкодер ……………………………………………….. 16
1.5 Генеративно-состязательные сети………………………………………. 21

2 Содержательная постановка задачи ……………………………………………. 25
3 Концептуальная постановка задачи ……………………………………………. 28

3.1 Представление изображений в медицине ……………………………. 28
3.2 Формат медицинских изображений ……………………………………. 29
3.3 Числовой формат медицинских данных (аллергены) ………….. 29

4 Программная реализация ……………………………………………………………. 34

4.1 Выбор программного обеспечения …………………………………….. 34
4.2 Особенности программной реализации ………………………………. 36

4.2.1 Синтез числовых данных ……………………………………………….. 36
4.2.2 Синтез изображений ………………………………………………………. 38

5 Статистический анализ результатов ……………………………………………. 46

5.1 Синтез числовых данных …………………………………………………… 46
5.2 Синтез изображений ………………………………………………………….. 48

6 Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение…………………………………………………………………………………… 52

6.1 Введение …………………………………………………………………………… 53
6.2 Предпроектный анализ ………………………………………………………. 54

6.2.1 Потенциальные потребители результатов исследования …. 54
6.2.2 SWOT анализ …………………………………………………………………. 54
6.2.3 Оценка проекта к коммерциализации……………………………… 56

6.3 Организация и планирование работ ……………………………………. 57

6.3.1 Продолжительность этапов работ …………………………………… 59
6.3.2 Разработка графика проведения научного исследования…. 59

6.4 Расчет сметы затрат на выполнение проекта ………………………. 65

6.4.1 Расчет затрат на материалы ……………………………………………. 65
6.4.2 Расчет заработной платы………………………………………………… 66
6.4.3 Расчет затрат на социальный налог ………………………………… 68
6.4.4 Расчет затрат на электроэнергию ……………………………………. 68
6.4.5 Расчет амортизационных расходов …………………………………. 69
6.4.6 Расчет расходов, учитываемых непосредственно на основе
платежных (расчетных) документов (кроме суточных)………………………. 71
6.4.7 Расчет прочих расходов …………………………………………………. 71
6.4.8 Расчет общей себестоимости проекта …………………………….. 72
6.4.9 Расчет прибыли ……………………………………………………………… 72
6.4.10 Расчет НДС ………………………………………………………………….. 73
6.4.11 Цена разработки ВКР …………………………………………………… 73

6.5 Оценка экономической эффективности проекта …………………. 73

6.5.1 Оценка научно-технического уровня НИР ……………………… 73

7 Социальная ответственность ………………………………………………………. 77

7.1 Введение …………………………………………………………………………… 79
7.2 Правовые и организационные вопросы обеспечения
безопасности ………………………………………………………………………………………… 80
7.3 Производственная безопасность ………………………………………… 82

7.3.1 Отклонение показателей микроклимата от нормы ………….. 83
7.3.2 Превышение уровня шума ……………………………………………… 86
7.3.3 Отсутствие или недостаток освещения …………………………… 86
7.3.4 Психофизиологические факторы (монотонность труда,
нервно-психические перегрузки, перенапряжение зрительных
анализаторов). …………………………………………………………………………………… 89
7.3.5 Поражение электрическим током …………………………………… 91

7.4 Обоснование мероприятий по снижению воздействия вредных
производственных факторов …………………………………………………………………. 91
7.5 Экологическая безопасность ……………………………………………… 92
7.6 Безопасность в чрезвычайных ситуациях …………………………… 93
7.7 Выводы по разделу «Социальная ответственность» ……………. 95

Заключение …………………………………………………………………………………….. 96
Список использованных источников литературы …………………………….. 98
Приложение I (справочное) …………………………………………………………… 101

В настоящее время машинное обучение набирает все большую
популярность. Наиболее востребованными являются алгоритмы машинного
зрения способные решать такие популярные задачи, как: классификация
изображений [1], детектирование объектов [2], распознавание текстов [3] и т.п.
Обучение в свою очередь подразделяют на три типа: обучение с учителем, без
учителя, обучение с подкреплением. Самым популярным является обучение с
учителем, так как оно позволяет в некоторой мере контролировать процесс
обучения на основе обучающих примеров. В основе каждого такого
успешного обучения лежит датасет1 с множеством уникальных примеров.
Результирующая точность обучаемой модели напрямую зависит от количества
подаваемых «качественных» тренировочных примеров. За частую именно
работа с данными, в частности сбор и разметка и является самой сложной и
трудоемкой задачей. Для составления «качественного» обучающего датасета
разработчики нередко прибегают к алгоритмам аугментации и синтеза новых
данных, с целью расширения обучающей выборки. Синтетические или
искусственно созданные данные подразумевают, множество уникальных
аннотированных примеров, являющихся видоизмененной комбинацией
исходной выборки данных. Но и синтетические данные не всегда идеальны
(см. рисунок 1). Под буквой «а» представлен вариант оригинального снимка
клеток, под буквой «б» представлен вариант искусственно созданных данных
с указание проблемных зон, а именно частичное перекрытие/неполнота
объектов. Представленный негативный пример не единственный, существует
множество проблем, связанных с синтез новых данных, вплоть до создания
экземпляров, не встречающихся в реальном мире.
Датасет (от англ. Data set) — термин, используемый для файловой системы
мейнфреймов от IBM; коллекция из логических записей, хранящихся в виде кортежа.
(а) (б)
Рисунок 1 – Пример синтетических данных

В ходе выполнения выпускной квалификационной работы были
изучены алгоритмы синтеза данных, изучен принцип работы
интеллектуальных систем, проведен литературный обзор. Реализованы
следующие алгоритмы (интеллектуальные модели):

 Полносвязный автоэнкодер для восстановления числовых данных;
 Полносвязный вариационный автоэнкодер для синтеза числовых
данных;
 Полносвязный вариационный автоэнкодер для синтеза
изображений;
 Сверточный вариационный автоэнкодер для синтеза изображений;
 Сверточный вариационный автоэнкодер, с применением transfer
learning, для синтеза изображений;
 Генеративно-состязательная модель для синтеза изображений;
 Комбинированная модель для синтеза изображений;
Проведена сравнительная характеристика моделей на медицинских
данных. В задаче синтеза изображений выявлено, что наилучших показателей
достигает модель сверточного вариационного автоэнкодера с применением
предварительно обученной модели выделения признаков в качестве энкодера.
Данная модель имеет сравнительно высокую скорость обучения, достигает
«ожидаемого» качества даже в восстановлении изображения с наложением
шумов, а также обладает высокой степенью вариативности. В задаче синтеза
числовых данных, а именно влияние аллергенов на человека качественных
результатов достиг вариационный автоэнкодер, основанный на полносвязных
слоях.
Достигнутые показатели не являются предельными для данной работы.
Разработанные модели могут быть доработаны архитектурно, а также может
быть проведена оптимизация гипперпараметров. Стоит отметить, что уже на
данном этапе, реализованные модели справляются с поставленной задачей и
используются в качестве генерации данных, для последующей
классификации.

1.Hripcsak G. et al. Observational Health Data Sciences and Informatics
(OHDSI): opportunities for observational researchers //Studies in health
technology and informatics. – 2015. – Т. 216. – С. 574.
2.Tschannen M., Bachem O., Lucic M. Recent advances in autoencoder-
based representation learning //arXiv preprint arXiv:1812.05069. – 2018.
3.Krizhevsky A., Sutskever I., Hinton G. E. Imagenet classification with
deep convolutional neural networks //Advances in neural information processing
systems. – 2012. – Т. 25. – С. 1097-1105.
4.Pu Y. et al. VAE learning via Stein variational gradient descent
//arXiv preprint arXiv:1704.05155. – 2017.
5.Burgess C. P. et al. Understanding disentangling in $beta $-VAE
//arXiv preprint arXiv:1804.03599. – 2018.
6.Dai B., Wipf D. Diagnosing and enhancing VAE models //arXiv
preprint arXiv:1903.05789. – 2019.
7.Лаптев В. В. , Данилов В. В. Исследование вариационного
автоэнкодера для синтеза новых медицинских данных // Сборник избранных
статей научной сессии ТУСУР: В 2 частях. Часть 2, Томск, 25-27 Мая 2020. –
Томск: В-Спектр, 2020 – C. 64-67.
8.Zhao J., Mathieu M., LeCun Y. Energy-based generative adversarial
network //arXiv preprint arXiv:1609.03126. – 2016.
9.Лаптев В. В. , Данилов В. В. , Гергет О. М. Исследование
генеративно–состязательных сетей для синтеза новых медицинских данных =
Research of generative adversarial networks for the synthesis of new medical data
// Автоматизация и моделирование в проектировании и управлении. – 2020 –
№. 2 (8). – C. 17-23. doi: 10.30987/2658-6436-2020-2-17-23
10.Creswell A., Bharath A. A. Inverting the generator of a generative
adversarial network //IEEE transactions on neural networks and learning systems.
– 2018. – Т. 30. – №. 7. – С. 1967-1974.
11.Laptev V. V. , Gerget O. M. , Markova N. A. Generative models
based on VAE and GAN for new medical data synthesis // Studies in Systems,
Decision and Control. – 2021 – Vol. 333. – p. 217-226. doi: 10.1007/978-3-030-
63563-3_17.
12.Вихман В.В., Копысов П.Е. Медицинские изображения / Вихман
В.В., Копысов П.Е. – Новосибирск: Новосибирский государственный
технический университет, 2014. – 5 с.
13.Трудовой кодекс Российской Федерации от 30.12.2001 N 197- ФЗ
(ред. От 30.12.2015)
14.ГОСТ12.2.032-78 Системастандартовбезопасноститруда
(ССБТ). Рабочее место при выполнении работ сидя. Общие эргономические
требования.
15.ГОСТ 22269-76. Система “Человек-машина”. Рабочее место
оператора. Взаимное расположение элементов рабочего места. Общие
эргономические требования.
16.ГОСТ 12.0.003-2015 Опасные и вредные производственные
факторы. Классификация. Перечень опасных и вредных факторов.
17.СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату
производственных помещений.
18.СанПиН 1.2.3685-21 Гигиенические нормативы и требования к
обеспечению безопасности и (или) безвредности для человека факторов среды
обитания.
19.СП 52.13330.2016 Естественное и искусственное освещение.
Актуализированная редакция СНиП 23-05-95.
20.ГОСТ 12.1.003-83 Система стандартов безопасности труда
(ССБТ). Шум. Общие требования безопасности.
21.СН 2.2.4/2.1.8.562-96. Шум на рабочих местах, в помещениях
жилых, общественных зданий и на территории жилой застройки.
22.ГОСТ 12.1.030-81 Система стандартов безопасности труда
(ССБТ). Электробезопасность. Защитное заземление. Зануление.
23.ГОСТ 26522-85 Короткие замыкания в электроустановках.
24.ГОСТ 12.1.038-82 Система стандартов безопасности труда
(ССБТ).Электробезопасность.Предельнодопустимыезначения
напряжений прикосновения и токов.
25.ГОСТ 12.1.004-91 Система стандартов безопасности труда
(ССБТ). Пожарная безопасность. Общие требования.
26.ГОСТ 17.4.3.04-85 Охрана природы (ССОП). Почвы. Общие
требования к контролю и охране от загрязнения.
27.ГОСТ Р 53692-2009 Ресурсосбережение. Обращение с отходами.
Этапы технологического цикла отходов.
28.НПБ 105-03 Определение категорий помещений, зданий и
наружных установок по взрывопожарной и пожарной опасности.
29.СНиП 21-01-97* Пожарная безопасность зданий и сооружений (с
Изменениями N 1, 2)

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям



    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Читать «Исследование и реализация метода синтеза вариационного автоэнкодера и генеративно-состязательных сетей в задачах создания новых медицинских данных»

    Последние выполненные заказы

    Перспективы внешнеэкономического сотрудничества России и КНР
    Спасибо огромное за написанную работу. Все быстро и качественно. Рекомендую а...
    Новое задание по менеджменту организации
    Самый лучший эксперт! Работа выполнена на высшем уровне и раньше срока! Заказ...
    Методика оценки эффективности деятельности телекоммуникационной компании с учетом отраслевой специфики
    Автора рекомендую! Работа сделана качественно, учтены все пожелания. Работа б...
    Реализация государственной культурной политики в Иркутской области
    Очень довольна работой автора. Магистрская работа выполнена отлично.
    Новое задание по менеджменту организации
    Работа выполнена в срок. Все сделано идеально. Обращаюсь не в первый раз к эт...
    Особенности формирования финансовой отчётности в соответствии с международными стандартами финансовой отче
    Довольна работой автора

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ

    Другие учебные работы по предмету