Исследование методов машинного обучения без учителя для анализа задач в больших вычислительных сетях

Шкабара, Анастасия Игоревна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Целью магистерской диссертации является обоснование выбора метода кластеризации данных для поиска закономерностей и аномалий на основе проведенного сравнительного анализа методов кластеризации исходных данных. Найденные закономерности и аномалии могут повлиять на время выполнения задач на вычислительных узлах распределенной системы Большого Адронного Коллайдера (ЦЕРН). Метод кластеризации данных для поиска закономерностей и аномалий позволит предсказывать длительность обработки цепочек заданий в больших вычислительных сетях.

Введение …………………………………………………………………………………………………………. 14

Глава 1 Аналитический обзор предметной области ………………………………………….. 16

1.1 Особенности распределенных вычислений в WLCG ……………………………… 16

1.2 Предсказание длительности выполнения задач по данным с БАК …………. 18

1.3 Обзор подходов к кластерному анализу в научной литературе ………………. 19

1.4 Классификация методов кластеризации. ……………………………………………….. 22

1.5 Методы кластеризации ………………………………………………………………………… 25

1.5.1 Метод k-средних ………………………………………………………………………… 25

1.5.2 Алгоритмы иерархической кластеризации ………………………………….. 27

1.5.3 Метод кластеризации на основе плотности DBSCAN ………………….. 28

1.6 Очистка данных ……………………………………………………………………………………. 29

1.7 Снижение размерности. ………………………………………………………………………… 32

1.7.1 Метод главных компонент (PCA) ……………………………………………….. 33

1.7.2 Стохастическое вложение соседей с t-распределением (T-SNE)…… 35

Глава 2. Применение подходов кластерного анализа к предметной области ……… 36

3.1 Описание входных данных …………………………………………………………………… 36

3.2 Подготовка данных ………………………………………………………………………………. 39

3.3 Снижение размерности признакового пространства………………………………. 44

Глава 3. Результаты исследования……………………………………………………………………. 47

3.1 K-means………………………………………………………………………………………………… 47

3.2 Иерархическая кластеризация ………………………………………………………………. 48

3.3 DBSCAN ………………………………………………………………………………………………. 51
Заключение……………………………………………………………………………………………………… 54

Глава 4. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение
……………………………………………………………………………………………………………………….. 56

4.1.1Технология QuaD ………………………………………………………………………… 57

5.1.2 Оценка готовности проекта к коммерциализации ………………………… 58

1.2 Инициация проекта ………………………………………………………………………………. 59

5.2.1 Цели и результаты проекта …………………………………………………………. 59

5.2.2 Организация и планирование работы ………………………………………….. 61

5.3 Планирование управления научно-техническим исследованием ……………. 62

5.3.1 План исследования ……………………………………………………………………… 62

5.3.2 Определение трудоемкости выполнения работ ……………………………. 63

5.3.3 Разработка графика проведения НТИ ………………………………………….. 64

5.4 Бюджет НТИ ………………………………………………………………………………………… 65

5.4.1 Амортизационные отчисления ……………………………………………………. 66

5.4.2 Основная заработная плата исполнителей …………………………………… 66

5.4.3 Дополнительная заработная плата исполнителей ………………………… 68

5.4.4 Отчисления во внебюджетные фонды (страховые отчисления) ……. 68

5.4.5 Накладные расходы ……………………………………………………………………. 69

5.4.6 Формирование бюджета затрат НТИ …………………………………………… 69

5.5 Риски проекта ………………………………………………………………………………………. 71

5.6 Определение интегрального показателя ресурсоэффективности ……………. 71

Глава 5. Социальная ответственность ………………………………………………………………. 74

5.1 Правовые и организационные вопросы обеспечения безопасности………… 75

5.1.1 Организационные мероприятия при компоновке рабочей зоны …… 75
5.1.2 Особенности законодательного регулирования проектных решений
………………………………………………………………………………………………………………… 76

5.2 Профессиональная социальная ответственность …………………………………… 77

5.2.1 Повышенный уровень электромагнитных излучений ………………….. 78

5.2.2 Отклонение показателей микроклимата ………………………………………. 79

5.2.3 Недостаточная освещённость рабочей зоны ………………………………… 82

5.2.4 Повышенный уровень шума на рабочем месте ……………………………. 84

5.2.5 Электробезопасность ………………………………………………………………….. 85

5.3 Экологическая безопасность …………………………………………………………………. 87

5.3.1 Загрязнение атмосферного воздуха …………………………………………….. 87

5.3.2 Отходы ………………………………………………………………………………………. 88

5.4 Безопасность в чрезвычайных ситуациях ……………………………………………… 88

5.4.1 Пожарная профилактика …………………………………………………………….. 88

5.4.2 Оценка пожарной безопасности помещения………………………………… 88

5.4.3 Анализ возможных причин загорания …………………………………………. 90

5.4.4 Мероприятия по устранению и предупреждению пожаров ………….. 90

Список используемых источников …………………………………………………………………… 92

Список публикаций и основных научных достижений …………………………………….. 97

Приложение А…………………………………………………………………………………………………. 98

1 Subject area overview ……………………………………………………………………………….. 99

2 System design …………………………………………………………………………………………. 102

2.1 Cluster analysis …………………………………………………………………………….. 102

2.2 Classification of clustering methods ………………………………………………… 103

2.3 Clustering Methods ……………………………………………………………………….. 104

2.4 Data cleaning ………………………………………………………………………………… 105
Приложение Б ……………………………………………………………………………………………….. 108

В современном мире одним из наиболее актуальных видов физических
исследований являются эксперименты по физике высоких энергий, вносящие
неоспоримый вклад в фундаментальную науку. В результате таких исследований
образуются огромное число данных, которые фиксируются детекторами
ускорителя заряженных частиц. Обработка такого объема данных требует
больших вычислительных мощностей, поэтому и создаются распределенные
системы обработки данных, в которые входят большое количество
суперкомпьютеров. Однако использование такого оборудования обходится
дорого, поэтому необходима организация рационального планирования обработки
данных, во избежание простоя оборудования и неравномерного распределения
задач по обработки, среди суперкомпьютеров системы обработки данных.
Очевидно, что определение времени обработки данных являются ключевой
задачей для организации системы планирования. Решением такой задачи является
система, способная предсказывать время обработки данных.
Данное исследование является частью работы по предсказыванию
длительности выполнения заданий в большой вычислительной сети Большого
Адронного Коллайдера. Было высказано предположение, что есть
закономерности, которые влияют на выполнение задач и время их окончания.
Предполагается, что предварительный кластерный анализ этих задач поможет
предсказывать длительность обработки точнее.
Цель данной работы – поиск закономерностей, влияющих на предсказание
длительности выполнения задач в цепочках с помощью предварительной
кластеризации.
Из этой цели вытекают следующие задачи:
1. Исследование методов кластеризации многомерных данных без
учителя.
2. Реализация алгоритмов снижения размерности и кластеризации
3. Сравнение и выбор наиболее оптимального метода для данного
набора данных
Данная работа является актуальной, потому что ученым важно знать, будет
ли задача выполнена завтра или через год, чтобы планировать эксперименты.
Часто задача состоит из более чем 1000 заданий и если какие-то события
вызывают ошибки, то одно необработанное задание приводит к тому, что вся
задача считается необработанным.
Важно уметь предсказывать данные аномалии и устранять ошибки. Одним
из этапов данной работы является кластеризация заданий.
Научная Новизна исследования заключается в том, что применение
алгоритмов кластеризации к журналам WLCG ранее не делалось. Были попытки
применить алгоритмы машинного обучения, но с учителем, а в данном случае
необходимо предсказывать тип, к которому может относиться задание заранее.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)