Top.Mail.Ru

Исследование методов машинного обучения без учителя для анализа задач в больших вычислительных сетях

Шкабара, Анастасия Игоревна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Целью магистерской диссертации является обоснование выбора метода кластеризации данных для поиска закономерностей и аномалий на основе проведенного сравнительного анализа методов кластеризации исходных данных. Найденные закономерности и аномалии могут повлиять на время выполнения задач на вычислительных узлах распределенной системы Большого Адронного Коллайдера (ЦЕРН). Метод кластеризации данных для поиска закономерностей и аномалий позволит предсказывать длительность обработки цепочек заданий в больших вычислительных сетях.

Введение …………………………………………………………………………………………………………. 14

Глава 1 Аналитический обзор предметной области ………………………………………….. 16

1.1 Особенности распределенных вычислений в WLCG ……………………………… 16

1.2 Предсказание длительности выполнения задач по данным с БАК …………. 18

1.3 Обзор подходов к кластерному анализу в научной литературе ………………. 19

1.4 Классификация методов кластеризации. ……………………………………………….. 22

1.5 Методы кластеризации ………………………………………………………………………… 25

1.5.1 Метод k-средних ………………………………………………………………………… 25

1.5.2 Алгоритмы иерархической кластеризации ………………………………….. 27

1.5.3 Метод кластеризации на основе плотности DBSCAN ………………….. 28

1.6 Очистка данных ……………………………………………………………………………………. 29

1.7 Снижение размерности. ………………………………………………………………………… 32

1.7.1 Метод главных компонент (PCA) ……………………………………………….. 33

1.7.2 Стохастическое вложение соседей с t-распределением (T-SNE)…… 35

Глава 2. Применение подходов кластерного анализа к предметной области ……… 36

3.1 Описание входных данных …………………………………………………………………… 36

3.2 Подготовка данных ………………………………………………………………………………. 39

3.3 Снижение размерности признакового пространства………………………………. 44

Глава 3. Результаты исследования……………………………………………………………………. 47

3.1 K-means………………………………………………………………………………………………… 47

3.2 Иерархическая кластеризация ………………………………………………………………. 48

3.3 DBSCAN ………………………………………………………………………………………………. 51
Заключение……………………………………………………………………………………………………… 54

Глава 4. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение
……………………………………………………………………………………………………………………….. 56

4.1.1Технология QuaD ………………………………………………………………………… 57

5.1.2 Оценка готовности проекта к коммерциализации ………………………… 58

1.2 Инициация проекта ………………………………………………………………………………. 59

5.2.1 Цели и результаты проекта …………………………………………………………. 59

5.2.2 Организация и планирование работы ………………………………………….. 61

5.3 Планирование управления научно-техническим исследованием ……………. 62

5.3.1 План исследования ……………………………………………………………………… 62

5.3.2 Определение трудоемкости выполнения работ ……………………………. 63

5.3.3 Разработка графика проведения НТИ ………………………………………….. 64

5.4 Бюджет НТИ ………………………………………………………………………………………… 65

5.4.1 Амортизационные отчисления ……………………………………………………. 66

5.4.2 Основная заработная плата исполнителей …………………………………… 66

5.4.3 Дополнительная заработная плата исполнителей ………………………… 68

5.4.4 Отчисления во внебюджетные фонды (страховые отчисления) ……. 68

5.4.5 Накладные расходы ……………………………………………………………………. 69

5.4.6 Формирование бюджета затрат НТИ …………………………………………… 69

5.5 Риски проекта ………………………………………………………………………………………. 71

5.6 Определение интегрального показателя ресурсоэффективности ……………. 71

Глава 5. Социальная ответственность ………………………………………………………………. 74

5.1 Правовые и организационные вопросы обеспечения безопасности………… 75

5.1.1 Организационные мероприятия при компоновке рабочей зоны …… 75
5.1.2 Особенности законодательного регулирования проектных решений
………………………………………………………………………………………………………………… 76

5.2 Профессиональная социальная ответственность …………………………………… 77

5.2.1 Повышенный уровень электромагнитных излучений ………………….. 78

5.2.2 Отклонение показателей микроклимата ………………………………………. 79

5.2.3 Недостаточная освещённость рабочей зоны ………………………………… 82

5.2.4 Повышенный уровень шума на рабочем месте ……………………………. 84

5.2.5 Электробезопасность ………………………………………………………………….. 85

5.3 Экологическая безопасность …………………………………………………………………. 87

5.3.1 Загрязнение атмосферного воздуха …………………………………………….. 87

5.3.2 Отходы ………………………………………………………………………………………. 88

5.4 Безопасность в чрезвычайных ситуациях ……………………………………………… 88

5.4.1 Пожарная профилактика …………………………………………………………….. 88

5.4.2 Оценка пожарной безопасности помещения………………………………… 88

5.4.3 Анализ возможных причин загорания …………………………………………. 90

5.4.4 Мероприятия по устранению и предупреждению пожаров ………….. 90

Список используемых источников …………………………………………………………………… 92

Список публикаций и основных научных достижений …………………………………….. 97

Приложение А…………………………………………………………………………………………………. 98

1 Subject area overview ……………………………………………………………………………….. 99

2 System design …………………………………………………………………………………………. 102

2.1 Cluster analysis …………………………………………………………………………….. 102

2.2 Classification of clustering methods ………………………………………………… 103

2.3 Clustering Methods ……………………………………………………………………….. 104

2.4 Data cleaning ………………………………………………………………………………… 105
Приложение Б ……………………………………………………………………………………………….. 108

В современном мире одним из наиболее актуальных видов физических
исследований являются эксперименты по физике высоких энергий, вносящие
неоспоримый вклад в фундаментальную науку. В результате таких исследований
образуются огромное число данных, которые фиксируются детекторами
ускорителя заряженных частиц. Обработка такого объема данных требует
больших вычислительных мощностей, поэтому и создаются распределенные
системы обработки данных, в которые входят большое количество
суперкомпьютеров. Однако использование такого оборудования обходится
дорого, поэтому необходима организация рационального планирования обработки
данных, во избежание простоя оборудования и неравномерного распределения
задач по обработки, среди суперкомпьютеров системы обработки данных.
Очевидно, что определение времени обработки данных являются ключевой
задачей для организации системы планирования. Решением такой задачи является
система, способная предсказывать время обработки данных.
Данное исследование является частью работы по предсказыванию
длительности выполнения заданий в большой вычислительной сети Большого
Адронного Коллайдера. Было высказано предположение, что есть
закономерности, которые влияют на выполнение задач и время их окончания.
Предполагается, что предварительный кластерный анализ этих задач поможет
предсказывать длительность обработки точнее.
Цель данной работы – поиск закономерностей, влияющих на предсказание
длительности выполнения задач в цепочках с помощью предварительной
кластеризации.
Из этой цели вытекают следующие задачи:
1. Исследование методов кластеризации многомерных данных без
учителя.
2. Реализация алгоритмов снижения размерности и кластеризации
3. Сравнение и выбор наиболее оптимального метода для данного
набора данных
Данная работа является актуальной, потому что ученым важно знать, будет
ли задача выполнена завтра или через год, чтобы планировать эксперименты.
Часто задача состоит из более чем 1000 заданий и если какие-то события
вызывают ошибки, то одно необработанное задание приводит к тому, что вся
задача считается необработанным.
Важно уметь предсказывать данные аномалии и устранять ошибки. Одним
из этапов данной работы является кластеризация заданий.
Научная Новизна исследования заключается в том, что применение
алгоритмов кластеризации к журналам WLCG ранее не делалось. Были попытки
применить алгоритмы машинного обучения, но с учителем, а в данном случае
необходимо предсказывать тип, к которому может относиться задание заранее.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)