Top.Mail.Ru

Исследование возможности применения нейронных сетей для прогнозирования финансовых временных рядов

Баяртуев, Бато Раднаевич Отделение экспериментальной физики (ОЭФ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данном исследовании была рассмотрена модель, а затем построена и протестирована рекуррентная нейронная сеть LSTM-типа, главной особенностью которой является способность запоминать информацию на долгие периоды времени.
Целью магистерской диссертации является исследование возможности применения нейронных сетей для прогнозирования финансовых временных рядов.

Введение …………………………………………………………………………………………………………………….. 10
1. Теоретическая часть …………………………………………………………………………………………………. 12
1.1. Искусственные нейронные сети…………………………………………………………………………… 12
1.2. Обучение нейронных сетей …………………………………………………………………………………. 14
1.3. Рекуррентная сеть LSTM-типа …………………………………………………………………………….. 16
1.4. Обзор литературы ………………………………………………………………………………………………. 19
2. Практическая часть ………………………………………………………………………………………………….. 24
2.1. Построение нейронной сети типа LSTM ………………………………………………………………. 24
2.2. Прогнозирование цен закрытия акций с помощью нейронной сети LSTM типа ………. 31
3. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение………………………. 45
3.1. Предпроектный анализ. потенциальные потребители результатов исследования …….. 45
3.2. Анализ конкурентных технических решений с позиции ресурсоэффективности и
ресурсосбережения …………………………………………………………………………………………………… 46
3.3. SWOT-анализ ……………………………………………………………………………………………………… 48
3.4. Инициация проекта…………………………………………………………………………………………….. 49
3.5. Определение трудоемкости работ………………………………………………………………………… 52
3.6. Бюджет научно-технического исследования …………………………………………………………. 55
3.7. Оценка сравнительной эффективности исследования ……………………………………………. 61
3.8. Реестр рисков проекта ………………………………………………………………………………………… 64
3.9. Выводы по разделу “Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение” …………………………………………………………………………………………………. 65
4. Социальная ответственность …………………………………………………………………………………….. 67
4.1. Правовые и организационные вопросы обеспечения безопасности ………………………… 68
4.2. Производственная безопасность …………………………………………………………………………. 72
4.3. Анализ вредных и опасных факторов …………………………………………………………………… 73
4.4. Экологическая безопасность ……………………………………………………………………………….. 81
4.5. Безопасность при чрезвычайных ситуациях………………………………………………………….. 82
4.6. Выводы по разделу “Социальная ответственность”……………………………………………….. 85
Заключение…………………………………………………………………………………………………………………. 86
Список публикаций студента ……………………………………………………………………………………….. 88
Список использованной литературы ……………………………………………………………………………… 89
Приложение I ……………………………………………………………………………………………………………… 91
Приложение II …………………………………………………………………………………………………………….. 95

В условиях современной экономической ситуации и резкого наращивания
темпов развития науки и техники для получения прибыли все больше
становятся актуальными вопросы планирования и принятия решений на основе
прогнозирования.
Развитие прогностики как науки в последние десятилетия привело к
созданию множества методов, процедур, приемов прогнозирования,
неравноценных по своему значению. По различным оценкам, насчитывается
свыше ста методов прогнозирования. В связи с этим, перед специалистами
возникает задача выбора методов, которые давали бы адекватные прогнозы для
изучаемых процессов или систем. Поэтому, задача прогнозирования временных
рядов является актуальной, поскольку в условиях рыночной экономики у
предприятия возникает потребность изучения данных о состоянии
деятельности в прошлом с целью оценки будущих условий и результатов
работы. До недавних пор основными методами прогнозирования временных
рядов оставались статистические методы. Однако связанные с этими методами
математические модели не всегда линейны, и поэтому они не могут
прогнозировать сложные явления и процессы, в которых модель данных может
быть нелинейной. В этих случаях и приходит на помощь аппарат нейронных
сетей.
Нейронная сеть представляет собой математический инструмент,
позволяющий моделировать разного рода зависимости, примерами которых
могут быть линейные модели, обобщенно линейные модели, нелинейные
модели. Возможность смоделировать нелинейные зависимости является
главным достоинством нейронных сетей. Способность нейронной сети к
обобщению и выделению скрытых зависимостей между входными и
выходными данными приводит к способности нейронной сети к
прогнозированию. Обученная нейронная сеть способна предсказать будущее
значение каких-то существующих в настоящий момент времени факторов на
основе их предыдущих значений.
В данном исследовании была рассмотрена модель, а затем построена и
протестирована рекуррентная нейронная сеть LSTM-типа, главной
особенностью которой является способность запоминать информацию на
долгие периоды времени.
Целью магистерской диссертации является исследование возможности
применения нейронных сетей для прогнозирования финансовых временных
рядов.
Для достижения поставленной цели необходимо решить следующие задачи:
1. Изучить литературу, проанализировать информацию и построить
нейронную сеть LSTM-типа.
2. Подготовить необходимые датасеты для проведения серии
экспериментов.
3. Провести эксперименты с различными параметрами сети для
получения большего количества информации в целях анализа работы
модели.
4. Провести сравнительный анализ полученных результатов.
1. Теоретическая часть

В результате магистерской диссертации решена актуальная научно-
практическая задача прогнозирования финансовых временных рядов.
Для построения модели нейронной сети с долгой краткосрочной памятью
была изучена соответствующая литература. Обработанная и
проанализированная информация была использована для выбора дизайна слоев
и качественной настройки параметров нейронной сети.
Был осуществлен поиск, предобработка и нормализация исторических
ценовых данных для обучения и тестирования модели LSTM типа.
По ходу работы был построен алгоритм для прогнозирования цен закрытия
акций, реализующий архитектуру рекуррентной нейронной сети, построенной
на элементах долгой краткосрочной памяти (LSTM). Данная модель была
выбрана из-за того, что датасет цен закрытия акций представляет собой
временной ряд и необходимо регулярно обращаться к нему и учитывать
долгосрочный контекст. Рекуррентная нейронная сеть с долгой краткосрочной
памятью LSTM хорошо справляется с данной задачей. Программный комплекс
был реализован с помощью открытой нейросетевой библиотеки Keras.
Варьируя настройки нейросети, можно добиваться лучших результатов –
получать меньшие ошибки прогнозов сети. В данном исследовании это было
продемонстрировано для следующих параметров:
1. Увеличение количества LSTM-слоев привело к существенному
улучшению прогноза; средняя ошибка прогноза уменьшилась в пять раз – с
0,039 до 0,008. Однако, при данной процедуре следует учитывать архитектуру
вычислительного оборудования, тaк как дальнейшее увеличение количества
слоев может привести к ухудшению результатов.
2. Было показано, что добавление дополнительного полносвязного
слоя перед выходным слоем может уменьшить ошибку прогноза сети, тем
самым улучшая работу модели.
3. Проанализировав результаты экспериментов с разными
параметрами batch-size, можно сказать, что уменьшение значения данной
характеристики определяет лучшую производительность нейронной сети.
Впрочем, стоит иметь в виду, что выбор величины данной характеристики
обуславливается возможностями памяти графического или аппаратного
обеспечения.
4. Путём подбора оптимального параметра исключения нейронов
dropout = 0.35, была повышена эффективность работы сети.

Таким образом, анализируя полученные результаты экспериментов, следует
отметить, что есть ещё множество способов улучшить результат: изменение
дизайна слоев, вариации с параметрами dropout, batch-size, и epochs, разная
инициализация и схемы активации, комбинирование с другими моделями.

Подводя итог, можно сказать, что рекуррентные нейронные сети типа
LSTM могут быть хорошим подспорьем для прогнозирования финансовых
временных рядов. Однако нужно учитывать много факторов перед
применением такого рода инструмента. Определяющим результат будет
процедура правильного подбора параметров нейросети. Неправильная оценка
мощностей и архитектуры вычислительного оборудования может привести к
плохим результатам.
Список публикаций студента

1. Баяртуев Б.Р. Бэктестинг VaR / Б.Р. Баяртуев // Точная наука. – 2020. –
№79. – С.7-9. URL: https://idpluton.ru/wp-content/uploads/tv79.pdf

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет