Классификация медицинских изображений с помощью свёрточных нейронных сетей

Дурандин Даниил Павлович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Темой данной работы является классификация рентген снимков груди на различные типы патологий. В данной работе проведён анализ различных наборов медицинских снимков для выявления общей специфики такого рода данных. Рассмотрены различные подходы учитывающие специфику наборов медицинских данных. Так же были предложены и реализованы модели с механизмом внимания к областям предполагаемых патологий на снимке. Данные модели были объединены в ансамбль. В результате предложенный подход смог улучшить качество классификации относительно результата популярных моделей свёрточных сетей. Так же предложенный метод позволяет экономить вычислительные ресурсы, за счёт возможности анализа небольших частей изображения.

Введение…………………………………………………………………………………………………….4
Постановка задачи………………………………………………………………………………………7
Обзор литературы……………………………………………………………………………………….8
Глава 1. Анализ данных…………………………………………………………………………….10
1.1 Анализ наборов данных медицинских изображений…………………………..10
1.1.1 Набор данных OASIS…………………………………………………………………..10
1.1.2 Набор данных CBIS-DDSM………………………………………………………….11
1.1.3 Набор данных BRATS ………………………………………………………………… 12
1.2 Анализ используемого набора изображений………………………………………14
1.2.1 Обзор данных ……………………………………………………………………………..14
1.2.2 Описание патологий набора CheXpert………………………………………….17
1.3 Выводы…………………………………………………………………………………………….19
Глава 2. Методы классификации медицинских изображений……………………..21
2.1 Свёрточные нейронные сети……………………………………………………………..21
2.1.1 Свёрточный слой ………………………………………………………………………..22
2.1.2 Слой пулинга………………………………………………………………………………23
2.1.3 Полносвязные слои……………………………………………………………………..23
2.1.4 Residual block………………………………………………………………………………24
2.1.5 Dense Block ………………………………………………………………………………… 24
2.1.6 Depthwise separable convolution…………………………………………………….25
2.2 Модель внимания……………………………………………………………………………..26
2.3 Выводы…………………………………………………………………………………………….29
Глава 3. Модель внимания к потенциальным областям интереса на
изображении……………………………………………………………………………………………..31
3.1 Модель с механизмом внимания ………………………………………………………. 31
3.1.1 Карты признаков ………………………………………………………………………… 31
3.1.2 Механизм выделения областей интереса………………………………………32
3.1.3 Обучение модели…………………………………………………………………………34
3.2 Модель на основе анализа частей изображения………………………………….34
3.2.1 Выделение областей…………………………………………………………………….35
3.2.2 Архитектура модели ………………………………………………………………….. 35
3.3 Ансамблирование моделей………………………………………………………………..37
3.4 Выводы…………………………………………………………………………………………….38
Глава 4. Реализация метода………………………………………………………………………40
4.1 Структура программного обеспечения ……………………………………………… 40
4.2 Базовая модель………………………………………………………………………………….40
4.3 Предложенный подход …………………………………………………………………….. 42
Заключение……………………………………………………………………………………………….45
Список литературы……………………………………………………………………………………46

Сегодня методы машинного обучения играют всё большую роль в
автоматизации медицинских процессов, им находят применение в таких
областях как геномная биоинформатика, структурная биоинформатика,
анализ медицинских снимков и многих других направлениях исследований.
Так, например, искусственным интеллектом решается задача
прогнозирования фолдинга белка, то есть процесс формирования сложной
структуры белка. Данные прогнозы способствуют созданию белков,
имеющих определённую структуру, что позволяет создавать лекарства на
основе белка.
В области геномной биоинформатики искусственный интеллект решает
такие задачи как: аннотация геномов и предсказание эффекта мутаций, что
позволяет в значительной степени ускорить процесс аннотации, что особенно
важно, учитывая стремительно растущее количество данных о
последовательностях генома.
Наиболее заметную роль, методы машинного обучения играют в
области анализа медицинских изображений, таких как рентген снимки и
изображения, полученные с помощью компьютерной томографии.
Искусственный интеллект позволяет обнаружить различные патологии на
данных изображениях, что позволяет снизить нагрузку на медицинский
персонал. Наиболее популярными направлениями в данной области является
поиск новообразований на рентген снимках груди и томографии мозга.
Применение машинного обучения в области анализа медицинских
изображений сегодня актуально как никогда, учитывая растущую
доступность исследований с помощью магнитно-резонансной томографии,
сегодня генерируется большое количество данных, которые необходимо
анализировать человеку. Внедрение искусственного интеллекта в данный
процесс, позволит значительно увеличить скорость обработки данных и
снять нагрузку со специалистов в данной области. Высокая степень
автоматизации данных процессов позволит проводить более широкую
диспансеризацию населения, что в свою очередь приведёт к увеличению
ранней выявляемости заболеваний, а следственно снизит уровень смертности
населения, от заболеваний которые имеют слабую симптоматику на раннем
этапе.
О необходимости исследований в данной области нам говорит то, что
уже сегодня методы машинного обучения внедряются в процесс диагностики
заболеваний. Так например, уже сегодня платформа Botkin.AI помогает
врачам выявлять рак лёгких на компьютерных томограммах, а модель,
разработанная компанией Care Mentor AI позволяет по КТ-снимкам
определить процент и степень поражения лёгких COVID-19. Данные
сервисы были подключены к единому радиологическому информационному
сервису, что говорит о том, что данный подходу уже активно используется
для диагностики заболеваний.
Основным источником данных, рассматриваемом в данной работе
являются рентген снимки груди с выявленными заболеваниями. Основной
задачей данной работы является классификация данных снимков по типу
выявленного заболевания. Для решения данной необходимо привлечь
методы машинного обучения, в частности свёрточные нейронные сети,
которые являются наиболее популярным решением для анализа
изображений.
Так же необходимо проанализировать специфику данных снимков, для
того чтобы произвести соответствующую предварительную обработку
изображений и выбрать наиболее подходящую архитектуру свёрточной сети.
Следует так же изучить специфику различных наборов данных медицинских
изображений, чтобы выявить общие закономерности в таких данных, для
того чтобы результаты данной работы не были слишком специфичны и
могли быть применены и для других областей анализа медицинских
изображений.
В ходе данной работы был произведён обзор различных методов
классификации, выполнен поиск необходимых данных, были предложены
базовый подход и подход, учитывающий специфику данных изображений,
данные подходы были реализованы, было произведено сравнение и анализ их
результатов работы.

В ходе данной работы был проведён анализ популярных наборов
медицинских данных. В результате данного анализа была выявлена общая
специфика для наборов медицинских изображений. Были проанализированы
популярные подходы учитывающие данную специфику. На основе анализа
данных подходов были предложены решения, которые потенциально могут
исправить недостатки рассмотренных решений. Были разработаны и
реализованы архитектуры свёрточных сетей, необходимые для реализации
предложенного подхода. Было реализовано ансамблирование моделей. Был
предложен и реализован механизм выделения зон интереса на изображений.
В итоге предложенная модель позволила улучшить точность классификации
относительно подхода реализованного с помощью ансамбля популярных
архитектур свёрточных сетей.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет