Классификация медицинских изображений с помощью свёрточных нейронных сетей

Дурандин Даниил Павлович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Темой данной работы является классификация рентген снимков груди на различные типы патологий. В данной работе проведён анализ различных наборов медицинских снимков для выявления общей специфики такого рода данных. Рассмотрены различные подходы учитывающие специфику наборов медицинских данных. Так же были предложены и реализованы модели с механизмом внимания к областям предполагаемых патологий на снимке. Данные модели были объединены в ансамбль. В результате предложенный подход смог улучшить качество классификации относительно результата популярных моделей свёрточных сетей. Так же предложенный метод позволяет экономить вычислительные ресурсы, за счёт возможности анализа небольших частей изображения.

Введение…………………………………………………………………………………………………….4
Постановка задачи………………………………………………………………………………………7
Обзор литературы……………………………………………………………………………………….8
Глава 1. Анализ данных…………………………………………………………………………….10
1.1 Анализ наборов данных медицинских изображений…………………………..10
1.1.1 Набор данных OASIS…………………………………………………………………..10
1.1.2 Набор данных CBIS-DDSM………………………………………………………….11
1.1.3 Набор данных BRATS ………………………………………………………………… 12
1.2 Анализ используемого набора изображений………………………………………14
1.2.1 Обзор данных ……………………………………………………………………………..14
1.2.2 Описание патологий набора CheXpert………………………………………….17
1.3 Выводы…………………………………………………………………………………………….19
Глава 2. Методы классификации медицинских изображений……………………..21
2.1 Свёрточные нейронные сети……………………………………………………………..21
2.1.1 Свёрточный слой ………………………………………………………………………..22
2.1.2 Слой пулинга………………………………………………………………………………23
2.1.3 Полносвязные слои……………………………………………………………………..23
2.1.4 Residual block………………………………………………………………………………24
2.1.5 Dense Block ………………………………………………………………………………… 24
2.1.6 Depthwise separable convolution…………………………………………………….25
2.2 Модель внимания……………………………………………………………………………..26
2.3 Выводы…………………………………………………………………………………………….29
Глава 3. Модель внимания к потенциальным областям интереса на
изображении……………………………………………………………………………………………..31
3.1 Модель с механизмом внимания ………………………………………………………. 31
3.1.1 Карты признаков ………………………………………………………………………… 31
3.1.2 Механизм выделения областей интереса………………………………………32
3.1.3 Обучение модели…………………………………………………………………………34
3.2 Модель на основе анализа частей изображения………………………………….34
3.2.1 Выделение областей…………………………………………………………………….35
3.2.2 Архитектура модели ………………………………………………………………….. 35
3.3 Ансамблирование моделей………………………………………………………………..37
3.4 Выводы…………………………………………………………………………………………….38
Глава 4. Реализация метода………………………………………………………………………40
4.1 Структура программного обеспечения ……………………………………………… 40
4.2 Базовая модель………………………………………………………………………………….40
4.3 Предложенный подход …………………………………………………………………….. 42
Заключение……………………………………………………………………………………………….45
Список литературы……………………………………………………………………………………46

Сегодня методы машинного обучения играют всё большую роль в
автоматизации медицинских процессов, им находят применение в таких
областях как геномная биоинформатика, структурная биоинформатика,
анализ медицинских снимков и многих других направлениях исследований.
Так, например, искусственным интеллектом решается задача
прогнозирования фолдинга белка, то есть процесс формирования сложной
структуры белка. Данные прогнозы способствуют созданию белков,
имеющих определённую структуру, что позволяет создавать лекарства на
основе белка.
В области геномной биоинформатики искусственный интеллект решает
такие задачи как: аннотация геномов и предсказание эффекта мутаций, что
позволяет в значительной степени ускорить процесс аннотации, что особенно
важно, учитывая стремительно растущее количество данных о
последовательностях генома.
Наиболее заметную роль, методы машинного обучения играют в
области анализа медицинских изображений, таких как рентген снимки и
изображения, полученные с помощью компьютерной томографии.
Искусственный интеллект позволяет обнаружить различные патологии на
данных изображениях, что позволяет снизить нагрузку на медицинский
персонал. Наиболее популярными направлениями в данной области является
поиск новообразований на рентген снимках груди и томографии мозга.
Применение машинного обучения в области анализа медицинских
изображений сегодня актуально как никогда, учитывая растущую
доступность исследований с помощью магнитно-резонансной томографии,
сегодня генерируется большое количество данных, которые необходимо
анализировать человеку. Внедрение искусственного интеллекта в данный
процесс, позволит значительно увеличить скорость обработки данных и
снять нагрузку со специалистов в данной области. Высокая степень
автоматизации данных процессов позволит проводить более широкую
диспансеризацию населения, что в свою очередь приведёт к увеличению
ранней выявляемости заболеваний, а следственно снизит уровень смертности
населения, от заболеваний которые имеют слабую симптоматику на раннем
этапе.
О необходимости исследований в данной области нам говорит то, что
уже сегодня методы машинного обучения внедряются в процесс диагностики
заболеваний. Так например, уже сегодня платформа Botkin.AI помогает
врачам выявлять рак лёгких на компьютерных томограммах, а модель,
разработанная компанией Care Mentor AI позволяет по КТ-снимкам
определить процент и степень поражения лёгких COVID-19. Данные
сервисы были подключены к единому радиологическому информационному
сервису, что говорит о том, что данный подходу уже активно используется
для диагностики заболеваний.
Основным источником данных, рассматриваемом в данной работе
являются рентген снимки груди с выявленными заболеваниями. Основной
задачей данной работы является классификация данных снимков по типу
выявленного заболевания. Для решения данной необходимо привлечь
методы машинного обучения, в частности свёрточные нейронные сети,
которые являются наиболее популярным решением для анализа
изображений.
Так же необходимо проанализировать специфику данных снимков, для
того чтобы произвести соответствующую предварительную обработку
изображений и выбрать наиболее подходящую архитектуру свёрточной сети.
Следует так же изучить специфику различных наборов данных медицинских
изображений, чтобы выявить общие закономерности в таких данных, для
того чтобы результаты данной работы не были слишком специфичны и
могли быть применены и для других областей анализа медицинских
изображений.
В ходе данной работы был произведён обзор различных методов
классификации, выполнен поиск необходимых данных, были предложены
базовый подход и подход, учитывающий специфику данных изображений,
данные подходы были реализованы, было произведено сравнение и анализ их
результатов работы.

В ходе данной работы был проведён анализ популярных наборов
медицинских данных. В результате данного анализа была выявлена общая
специфика для наборов медицинских изображений. Были проанализированы
популярные подходы учитывающие данную специфику. На основе анализа
данных подходов были предложены решения, которые потенциально могут
исправить недостатки рассмотренных решений. Были разработаны и
реализованы архитектуры свёрточных сетей, необходимые для реализации
предложенного подхода. Было реализовано ансамблирование моделей. Был
предложен и реализован механизм выделения зон интереса на изображений.
В итоге предложенная модель позволила улучшить точность классификации
относительно подхода реализованного с помощью ансамбля популярных
архитектур свёрточных сетей.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет