Квазиоптимальные полиномиальные траектории в задачах управления подвижных объектов

Злобин Данил Юрьевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе исследован вопрос построения допустимой траектории движения нелинейной управляемой механической системы представленной в форме дифференциального включения высшего порядка. Подобная задача возникает в теории управления при построении программного движения, при этом требуется построить программное движение, которое удовлетворяло бы дифференциальное включение (фазовые ограничения) и было бы близко к оптимальному значению некоторого заданного функционала качества. Часто есть смысл рассматривать только полиномиальные траектории системы в пространстве состояний, как, например, в задаче о посадке беспилотного летательного аппарата, так как не всегда на практике требуется экстремальное управлениe, часто требуется лишь приближение к оптимальному в определенном классе функций, и, применительно к данной задаче, метод полиномиальных траекторий может быть успешно использован. Представлен способ учета фазовых и управляющих ограничений при прямом построении квазиоптимальной полиномиальной траектории в пространстве состояний дифференциального включения высшей степени. Чтобы учесть фазовые ограничения, мы используем асимптотически точную монотонную оценку диапазона значений полинома, основанную на обобщенном разложении по полиномам Бернштейна. Граничные условия учитываются с помощью полинома Эрмита. Представленный метод иллюстрируется на примере задачи терминального управления летательным аппаратом, а именно посадки на движущуюся по заданному закону платформу.

Введение …………………………… 3
Обзорлитературы ……………………… 4
Постановказадачи ……………………… 5
Глава1.Полиномы ……………………… 7
1.1. Общий вид полинома и мультииндексная нотация . . . . . 7
1.2. Полиномыисвертки ………………… 8
1.3. Оценка области значений полинома на единичном сегменте 10
1.4. Условия включения полинома в выпуклое множество. . . 13
Глава 2. Квази-аппроксимация задач оптимального управле- ния………………………….. 14
2.1. Постановказадачи …………………. 14
2.2. Граничныеусловия …………………. 15
2.3. Сведение к конечномерной задаче нелинейного програм- мирования ……………………… 15
2.4. Градиенты полиномиальных ограничений . . . . . . . . . 17
Глава3.Пример……………………….. 21
3.1. Постановказадачи …………………. 21
3.2. ВидзадачиНЛП ………………….. 24
3.3. Численныйэксперимент ………………. 25
Заключение………………………….. 30
Списоклитературы …………………….. 31

В данной работе исследован вопрос построения допустимой траекто- рии движения нелинейной управляемой механической системы представ- ленной в форме дифференциального включения высшего порядка. Подоб- ная задача возникает в теории управления при построении программного движения, при этом требуется построить программное движение, которое удовлетворяло бы дифференциальное включение (фазовые ограничения) и было бы близко к оптимальному значению некоторого заданного функци- онала качества. Часто есть смысл рассматривать только полиномиальные траектории системы в пространстве состояний, как, например, в задаче о посадке беспилотного летательного аппарата. Так как полиномиальная траектория бесконечно дифференцируема, то, скорее всего, не будет соот- ветствовать оптимальному управлению, найденному, например, с исполь- зованием принципа максимума Понтрягина. Однако, не всегда на практике требуется экстремальное управлениe, часто требуется лишь приближение к оптимальному в определенном классе функций, и, приминительно к данной задаче, метод полиномиальных траеторий может быть успешно использо- ван. Далее будет представлен способ учета фазовых и управляющих огра- ничений при прямом построении квазиоптимальной полиномиальной тра- ектории в пространстве состояний дифференциального включения высшей степени. Чтобы учесть фазовые ограничения, мы используем асимптотиче- ски точную монотонную оценку диапазона значений полинома, основанную на обобщенном разложении по полиномам Бернштейна. Граничные усло- вия учитываются с помощью полинома Эрмита. Представленный метод иллюстрируется на примере задачи терминального управления летатель- ным аппаратом, а именно посадки на движущуюся по заданному закону платформу.

В данной работе был предложен метод сведения задач оптимального управления, представленных в форме дифференциального включения с за- данным граничным включением, к задаче нелинейного программирования специального типа, причем метод сведения гарантирует допустимость тра- ектории при выполнении ограничений задачи нелинейного программирова- ния в конечномерном пространстве. В этом заключается основное преиму- щество метода, в отличии от методов типа коллокаций, когда рассматрива- ются интерполирующие функции заданные через промежуточные точки, в предложенном методе оптимизация ведется по коэффициентам полинома, который удовлетворяет граничному включению — это позволило нам ука- зать достаточные конечномерные условия допустимости траектории. Как уже было сказано, параметризация с помощью полинома Эрмита обеспе- чивает точное выполнение граничных условий на траектории конструктив- ным образом. Представленный метод подходит для случаев с невыпуклы- ми ограничениями и позволяет выделить выпуклую часть отдельно. Если множество дифференциального включения не представимо в виде пере- сечения множества с алгебраической границей множества выпуклого, то можно аппроксимировать это множество так, чтобы оно допускало такое представление, от этой аппроксимации, однако, будет зависеть сохранится ли достаточность ограничений задачи конечномерного программирования для допустимости траектории в терминах исходной задачи. Этот вопрос резонно решать для каждой задачи отдельно, так как его общее рассмот- рение может быть достаточно громоздко. Изложенный метод проиллюстри- рован на примере задачи посадки летательного аппарата на движущуюся по заданному закону платформу. Эта задача является достаточно слож- ной чтобы её решение с применением принципа максимума Понтрягина было крайне затруднено, но, с другой стороны, данная задача хорошо ил- люстрирует подход, когда не требуется находить экстремальное решение, а нужно лишь получить возможность уменьшать время посадки до при- емлемого значения посредством добавления дополнительных коэффици- ентов и осуществления шагов методами наподобие SQP. Показано, что в
30
рамках данной задачи и при заданных параметрах не имеет смысла стро- ить полиномиальную траекторию выше 15 степени, так как это не влечет практически никаких преимуществ по результрующему времени посадки, и, напротив, может затруднить сходимость.

[1] Benson, D.A., Huntington, G.T. , Thorvaldsen, T.P. , Rao, A.V.: Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method. J. Guid. Control Dyn. 6, 1435–1440 (2006)
[2] Mehne, H. H., Borzabadi, A. H.: A Numerical Method for Solving Optimal Control Problems Using State Parametrization. Numer. Algorithm. 2, 165–169 (2006)
[3] Kafash, B., Delavarkhalafi, A., Karbassi, S. M.: Application of Chebyshev Polynomials to Derive Efficient Algorithms for the Solution of Optimal Control Problems. Sci. Iran. 3, 795–805 (2012)
[4] Seywald, H.: Trajectory Optimization Based on Differential Inclusion. J. Guid. Control Dyn. 3, 480–487 (1994)
[5] Conway, B. A., Larson, K. M.: Collocation Versus Differential Inclusion in Direct Optimization. J. Guid. Control Dyn. 5, 780–785 (1998)
[6] Hermite, M.Ch., Borchardt, M.: Sur la formule d’interpolation de Lagrange. J. Reine Angew. Math. 84, 70–79 (1878)
[7] Uteshev, A.Yu., Tamasyan, G.Sh.: On the Problem of Polynomial Interpolation with Multiple Nodes (In Russian). Vestnik of Saint Petersburg University. Ser. 10. 3, 76–85 (2010)
[8] Lane, J.M., Riesenfeld, R.F.: Bounds on a Polynomial. BIT Numer. Math. 1, 112–117 (1981)
[9] Rivlin, T. J.: Bounds on a Polynomial. J. Res. Natl. Bur. Stand. Sec. B: Math. 1, 47–54 (1970)
31
[10] Nocedal, J., Wright, S.J.: Numerical Optimization, Second Edition. Springer Series in Operations Research, Springer Verlag, New York (2006)
[11] Waltz,R.A.,Morales,J.L.,Nocedal,J.,Orban,D.:AnInteriorAlgorithm for Nonlinear Optimization that Combines Line Search and Trust Region Steps. Math. Program. 107, 391–408 (2006)
[12] Lorentz, G. G.: Bernstein Polynomials. University of Toronto Press, Toronto (1953)
[13] Kanatnikov, A. N., Shmagina, E. A.: The Problem of Terminal Control of Aircraft Movement (In Russian). In: Emelyanov, S. V., Korovina, S. K. (eds.) Nonlinear Dynamics and Control, vol. 7, pp. 79-94. Fizmatlit, Moscow (2010)

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет