Нейросетевой расчёт динамических показателей

Беляев Василий Андреевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе рассматривается подход расчёта динамических характеристик существенно нелинейных динамических процессов. Часто для таких процессов математические модели или не определены или задаются недостаточно точно, но сами данные наблюдения динамики этих явлений могут быть доступны в виде временных рядов. Показан метод построения нейронной сети, которая может по данным наблюдения рассчитывать важные динамические характеристики, в том числе такие как старший показатель Ляпунова — мера наличия хаотических режимов поведения.

Введение 3

Постановка задачи 8

Обзор литературы 9

Глава 1. Хаотическая динамика нелинейных процессов 12
1.1. Динамический параметр хаотического поведения движений . 12
1.2. Анализ старшего показателя Ляпунова по наблюдениям . . . 15

Глава 2. Исследование динамики нелинейных систем 17
2.1. Математическая модель одной нелинейной системы . . . . . . 17
2.2. Восстановление фазовой динамики по наблюдательным данным 19

Глава 3. Нейросетевое вычисление параметров хаотической
динамики 22
3.1. Нейросетевой анализ старшего показателя Ляпунова по на-
блюдениям . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Определение параметров динамики для регулярных и не ре-
гулярных типов движений . . . . . . . . . . . . . . . . . . . . 24

Выводы 26

Заключение 27

Список литературы 28

Приложение 31

Нейронная сеть — это тип машинного обучения, который моделирует
себя в качестве человеческого мозга. Это создает искусственную нейронную
сеть, которая с помощью алгоритма позволяет компьютеру учиться путем
включения новых данных. Хотя в наши дни существует множество алго-
ритмов искусственного интеллекта, нейронные сети способны выполнять
то, что называют глубоким обучением. В то время как основной единицей
мозга является нейрон, основным строительным блоком искусственной ней-
ронной сети является персептрон, который выполняет простую обработку
сигналов, и они затем соединяются в большую ячеистую сеть. Компьютер
с нейронной сетью учат выполнять задачу, анализируя обучающие при-
меры, которые были предварительно подготовлены. Типичным примером
задачи для нейронной сети, использующее глубокое обучение, является за-
дача распознавания объектов, где нейронная сеть представлена большим
количеством объектов определенного типа, таких как кошка или дорожный
знак, и компьютер, анализируя повторяющиеся шаблоны в представленных
изображениях, учится классифицировать новые изображения.
В свою очередь, под рекуррентными сетями подразумеваются нейрон-
ные сети, в которых присутствуют направленные последовательности при
соединении элементов. Это их свойство даёт возможность обрабатывать
серии событий во времени или в последовательных цепях пространства.
Рекурсивные сети способны использовать внутреннюю память при обра-
ботке последовательностей произвольной длины, что неспособны делать в
большинстве своём многослойные перцептроны. Как итог, сети RNN при-
менимы в задачах, требующих деления чего-то интегрального на части:
распознавание рукописного ввода или речи. Для этих сетей придумано
большое количество алгоритмов различной сложности. В последние годы
наиболее широко используется сеть с долговременной и кратковременной
памятью (LSTM) и контролируемой рекуррентной единицей (GRU).
В качестве примера рассмотрим простейшую нейросеть — перцеп-
трон. Он представляет собой один слой нейронов, принимающих входные
данные (один или несколько битов, действительных чисел, пикселей и т.п.),
модифицирующих их с учетом собственного веса и передающих далее. В
однослойном перцептроне выдача всех нейронов объединяется различными
Рис. 1: Модель рекуррентной нейронной сети

Главной целью данной работы было разработка и реализация ней-
росетевого метода вычисления динамических параметров (старший пока-
затель Ляпунова) на базе рассмотренной модели нелинейной динамики с
хаотическими режимами.
Основные результаты представленной дипломной работы:

• Предложен метод создания нейронной сети для работы с временными
рядами наблюдательных данных;

• Рассмотрена класс существенно нелинейных динамических систем с
возможными как регулярными, так и хаотическими типами траекто-
рий;

• Рассчитан старший показатель Ляпунова в локальной области фазо-
вого пространства;

• Определены возможные набора параметров указанной системы, от-
вечающих регулярным и хаотическим типам движений.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет