Нейросетевой расчёт динамических показателей

Беляев Василий Андреевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе рассматривается подход расчёта динамических характеристик существенно нелинейных динамических процессов. Часто для таких процессов математические модели или не определены или задаются недостаточно точно, но сами данные наблюдения динамики этих явлений могут быть доступны в виде временных рядов. Показан метод построения нейронной сети, которая может по данным наблюдения рассчитывать важные динамические характеристики, в том числе такие как старший показатель Ляпунова — мера наличия хаотических режимов поведения.

Введение 3

Постановка задачи 8

Обзор литературы 9

Глава 1. Хаотическая динамика нелинейных процессов 12
1.1. Динамический параметр хаотического поведения движений . 12
1.2. Анализ старшего показателя Ляпунова по наблюдениям . . . 15

Глава 2. Исследование динамики нелинейных систем 17
2.1. Математическая модель одной нелинейной системы . . . . . . 17
2.2. Восстановление фазовой динамики по наблюдательным данным 19

Глава 3. Нейросетевое вычисление параметров хаотической
динамики 22
3.1. Нейросетевой анализ старшего показателя Ляпунова по на-
блюдениям . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Определение параметров динамики для регулярных и не ре-
гулярных типов движений . . . . . . . . . . . . . . . . . . . . 24

Выводы 26

Заключение 27

Список литературы 28

Приложение 31

Нейронная сеть — это тип машинного обучения, который моделирует
себя в качестве человеческого мозга. Это создает искусственную нейронную
сеть, которая с помощью алгоритма позволяет компьютеру учиться путем
включения новых данных. Хотя в наши дни существует множество алго-
ритмов искусственного интеллекта, нейронные сети способны выполнять
то, что называют глубоким обучением. В то время как основной единицей
мозга является нейрон, основным строительным блоком искусственной ней-
ронной сети является персептрон, который выполняет простую обработку
сигналов, и они затем соединяются в большую ячеистую сеть. Компьютер
с нейронной сетью учат выполнять задачу, анализируя обучающие при-
меры, которые были предварительно подготовлены. Типичным примером
задачи для нейронной сети, использующее глубокое обучение, является за-
дача распознавания объектов, где нейронная сеть представлена большим
количеством объектов определенного типа, таких как кошка или дорожный
знак, и компьютер, анализируя повторяющиеся шаблоны в представленных
изображениях, учится классифицировать новые изображения.
В свою очередь, под рекуррентными сетями подразумеваются нейрон-
ные сети, в которых присутствуют направленные последовательности при
соединении элементов. Это их свойство даёт возможность обрабатывать
серии событий во времени или в последовательных цепях пространства.
Рекурсивные сети способны использовать внутреннюю память при обра-
ботке последовательностей произвольной длины, что неспособны делать в
большинстве своём многослойные перцептроны. Как итог, сети RNN при-
менимы в задачах, требующих деления чего-то интегрального на части:
распознавание рукописного ввода или речи. Для этих сетей придумано
большое количество алгоритмов различной сложности. В последние годы
наиболее широко используется сеть с долговременной и кратковременной
памятью (LSTM) и контролируемой рекуррентной единицей (GRU).
В качестве примера рассмотрим простейшую нейросеть — перцеп-
трон. Он представляет собой один слой нейронов, принимающих входные
данные (один или несколько битов, действительных чисел, пикселей и т.п.),
модифицирующих их с учетом собственного веса и передающих далее. В
однослойном перцептроне выдача всех нейронов объединяется различными
Рис. 1: Модель рекуррентной нейронной сети

Главной целью данной работы было разработка и реализация ней-
росетевого метода вычисления динамических параметров (старший пока-
затель Ляпунова) на базе рассмотренной модели нелинейной динамики с
хаотическими режимами.
Основные результаты представленной дипломной работы:

• Предложен метод создания нейронной сети для работы с временными
рядами наблюдательных данных;

• Рассмотрена класс существенно нелинейных динамических систем с
возможными как регулярными, так и хаотическими типами траекто-
рий;

• Рассчитан старший показатель Ляпунова в локальной области фазо-
вого пространства;

• Определены возможные набора параметров указанной системы, от-
вечающих регулярным и хаотическим типам движений.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет