О временной состоятельности нормативных принципов оптимальности в динамических играх
В работе исследуется повторяющаяся конечное число раз и динамическая модели дилеммы заключённого n лиц. Построен некоторый способ поведения, который с одной стороны обеспечивает игрокам высокие выигрыши, а с другой — устойчив относительно отклонения коалиций или отдельных игроков. Найдена новая равновесная ситуация в игре, позволяющая достичь максимального выигрыша всех игроков на первых (K-k*) шагах, при этом на этом количестве шагов равновесие является сильным, а на оставшихся k* шагах равновесие устойчиво относительно индивидуальных отклонений. Найдено количество шагов k*, которое обеспечивает эффективную кооперацию в динамической модели в том смысле, что при отклонении суммарный выигрыш любой отклонившейся коалиции уменьшается. Построено динамически устойчивое подъядро. Найдены векторы Шепли для стохастической и динамической моделей дилеммы.
Введение 3
Обзор литературы 6
Описание модели «дилеммы заключённого для n лиц» 10
Определение эффективного наказания 15
Моделькооперациивповторяющейсяигре . . . . . . . . . . . . . . . 15
Моделькооперациивдинамическойигре ……………. 25
Подъядро игры «дилемма заключенного n лиц» 28
Вектор Шепли для «дилеммы заключенного n лиц» 36
Вектор Шепли стохастической «дилеммы заключенного n лиц» . . . 36
Вектор Шепли динамической «дилеммы заключенного n лиц» . . . . 40
Вывод
Список литературы
В современном мире многие процессы взаимодействия людей можно описать теоретико-игровой моделью. Одной из основополагающих моделей теории игр является «дилемма заключённого». Она позволяет анализиро- вать взаимодействие двух рациональных агентов в условиях, когда для до- стижения общей выгоды необходимо поступиться личными интересами (от- казаться от выбора строго доминирующей стратегии для достижения Парето- оптимума). Для реализации многостороннего взаимодействия была реализо- вана модель «дилеммы заключённого n лиц», которая впервые была рассмот- рена Гамбургером (Hamburger H.) [7]. В ней были сохранены основные прин- ципы взаимодействия, аналогичные классической модели.
Решение подобного рода задач заключается в нахождении равновесных стратегий поведения, а также иных принципов оптимальности в построенной модели. Кроме того, большое количество игроков делает эту задачу более интересной с точки зрения кооперативной теории игр, поскольку даже ха- рактиристическая функция выглядит менее тривиально, чем в двухагентной модели.
Эксперименты с частично кооперативным поведением в повторяющейся «дилемме заключённого n лиц» были описаны и проанализированы Страф- фином [14]. Поскольку взаимодействие лиц осуществляется многоэтапно, а каждый поступок накладывает отпечаток на дальнейшие взаимоотношения, следует рассматривать повторяющийся вариант модели. Ауманн [1] анализи- рует равновесное поведение в условиях неопределённого количества повторе- ний данной игры.
В данной работе исследуется новый равновесный принцип поведения в
3
условиях данной модели. Строится новая характеристическая функция Пет- росяна [13] для рассмотрения нормативных принципов оптимальности в ди- намической модели «дилеммы заключённого n лиц». В частности, находится подъядро Петросяна-Панкратовой [12] динамической игры, которое в т. ч. со- держит вектор Шепли.
В первой главе приводится наиболее полное описание модели « дилемма заключённого n лиц», обобщающее уже существующие наработки в этой об- ласти, а также построена функция выигрышей игроков, выделены основные положения данной игры. Для наиболее полного понимания строятся табли- цы соответствия общей функции выигрыша, выведенной в данной работе, с разными видами таблиц выигрышей, рассматриваемых в более ранней лите- ратуре.
В разделе 2 находится новое равновесие по Нэшу в конечной многоша- говой игре и доказывается теорема об эффективном наказании при коопера- тивном поведении игроков в конечной повторяющейся и динамической играх, основанных на модели «дилемма заключённого n лиц». Приводится пример расчёта максимально необходимого количества шагов в повторяющейся и ди- намической игре для обеспечения эффективного наказания при использова- нии данной модели для трёх игроков.
В третьем разделе находится ядро динамической модели, а также, ос- новываясь на построении новой характеристической функции Петросяна [13] для многошаговой динамической игры найдено подъядро динамической «ди- леммы заключённого n лиц» и доказано, что оно обладает свойством сильной динамической устойчивости.
Последний раздел относится к поискам вектора Шепли в стохастиче-ских и динамических играх, основанных на модели «дилемма заключённого n лиц».
Последние выполненные заказы
Хочешь уникальную работу?
Больше 3 000 экспертов уже готовы начать работу над твоим проектом!