О временной состоятельности нормативных принципов оптимальности в динамических играх

Гриних Александра Леонидовна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В работе исследуется повторяющаяся конечное число раз и динамическая модели дилеммы заключённого n лиц. Построен некоторый способ поведения, который с одной стороны обеспечивает игрокам высокие выигрыши, а с другой — устойчив относительно отклонения коалиций или отдельных игроков. Найдена новая равновесная ситуация в игре, позволяющая достичь максимального выигрыша всех игроков на первых (K-k*) шагах, при этом на этом количестве шагов равновесие является сильным, а на оставшихся k* шагах равновесие устойчиво относительно индивидуальных отклонений. Найдено количество шагов k*, которое обеспечивает эффективную кооперацию в динамической модели в том смысле, что при отклонении суммарный выигрыш любой отклонившейся коалиции уменьшается. Построено динамически устойчивое подъядро. Найдены векторы Шепли для стохастической и динамической моделей дилеммы.

Введение 3
Обзор литературы 6
Описание модели «дилеммы заключённого для n лиц» 10
Определение эффективного наказания 15
Моделькооперациивповторяющейсяигре . . . . . . . . . . . . . . . 15
Моделькооперациивдинамическойигре ……………. 25
Подъядро игры «дилемма заключенного n лиц» 28
Вектор Шепли для «дилеммы заключенного n лиц» 36
Вектор Шепли стохастической «дилеммы заключенного n лиц» . . . 36
Вектор Шепли динамической «дилеммы заключенного n лиц» . . . . 40
Вывод
Список литературы

В современном мире многие процессы взаимодействия людей можно описать теоретико-игровой моделью. Одной из основополагающих моделей теории игр является «дилемма заключённого». Она позволяет анализиро- вать взаимодействие двух рациональных агентов в условиях, когда для до- стижения общей выгоды необходимо поступиться личными интересами (от- казаться от выбора строго доминирующей стратегии для достижения Парето- оптимума). Для реализации многостороннего взаимодействия была реализо- вана модель «дилеммы заключённого n лиц», которая впервые была рассмот- рена Гамбургером (Hamburger H.) [7]. В ней были сохранены основные прин- ципы взаимодействия, аналогичные классической модели.
Решение подобного рода задач заключается в нахождении равновесных стратегий поведения, а также иных принципов оптимальности в построенной модели. Кроме того, большое количество игроков делает эту задачу более интересной с точки зрения кооперативной теории игр, поскольку даже ха- рактиристическая функция выглядит менее тривиально, чем в двухагентной модели.
Эксперименты с частично кооперативным поведением в повторяющейся «дилемме заключённого n лиц» были описаны и проанализированы Страф- фином [14]. Поскольку взаимодействие лиц осуществляется многоэтапно, а каждый поступок накладывает отпечаток на дальнейшие взаимоотношения, следует рассматривать повторяющийся вариант модели. Ауманн [1] анализи- рует равновесное поведение в условиях неопределённого количества повторе- ний данной игры.
В данной работе исследуется новый равновесный принцип поведения в
3
условиях данной модели. Строится новая характеристическая функция Пет- росяна [13] для рассмотрения нормативных принципов оптимальности в ди- намической модели «дилеммы заключённого n лиц». В частности, находится подъядро Петросяна-Панкратовой [12] динамической игры, которое в т. ч. со- держит вектор Шепли.
В первой главе приводится наиболее полное описание модели « дилемма заключённого n лиц», обобщающее уже существующие наработки в этой об- ласти, а также построена функция выигрышей игроков, выделены основные положения данной игры. Для наиболее полного понимания строятся табли- цы соответствия общей функции выигрыша, выведенной в данной работе, с разными видами таблиц выигрышей, рассматриваемых в более ранней лите- ратуре.
В разделе 2 находится новое равновесие по Нэшу в конечной многоша- говой игре и доказывается теорема об эффективном наказании при коопера- тивном поведении игроков в конечной повторяющейся и динамической играх, основанных на модели «дилемма заключённого n лиц». Приводится пример расчёта максимально необходимого количества шагов в повторяющейся и ди- намической игре для обеспечения эффективного наказания при использова- нии данной модели для трёх игроков.
В третьем разделе находится ядро динамической модели, а также, ос- новываясь на построении новой характеристической функции Петросяна [13] для многошаговой динамической игры найдено подъядро динамической «ди- леммы заключённого n лиц» и доказано, что оно обладает свойством сильной динамической устойчивости.
Последний раздел относится к поискам вектора Шепли в стохастиче-ских и динамических играх, основанных на модели «дилемма заключённого n лиц».

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Екатерина Б. кандидат наук, доцент
    5 (174 отзыва)
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподав... Читать все
    После окончания института работала экономистом в системе государственных финансов. С 1988 года на преподавательской работе. Защитила кандидатскую диссертацию. Преподавала учебные дисциплины: Бюджетная система Украины, Статистика.
    #Кандидатские #Магистерские
    300 Выполненных работ
    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет