Top.Mail.Ru

Оценка финансовых рисков VaR и CVaR для акций индекса Dow Jones с помощью нейронных сетей

Грязнов, Алексей Дмитриевич Отделение экспериментальной физики (ОЭФ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объект исследования – оценка рисков инвестиций на финансовых рынках с помощью показателей VaR и CVaR. Данные меры риска будут смоделированы с помощью нейронных сетей на языке программирования Python 3.7. Модель нейронных сетей будет обучаться и строить прогнозные данные на исторических данных о котировках акций, входящих в состав индекса Dow Jones.

Введение …………………………………………………………………………………………………………… 10
Основные термины: …………………………………………………………………………………………… 11
1. Теоретическая часть……………………………………………………………………………………….. 12
1.1. Обзор существующих методов и алгоритмов решения задачи. ………………… 12
1.2. Оценка рисков. ……………………………………………………………………………………. 16
1.2.1. Value-at-Risk (VaR) ……………………………………………………………………….. 16
1.2.2. Conditional Value-at-Risk (CVaR) ……………………………………………………. 20
1.3. Модель нейронной сети ……………………………………………………………………….. 21
1.3.1. Нейронные сети. Основные понятия ………………………………………………. 21
1.3.2. Многослойный перцептрон. Виды и ключевые понятия …………………… 26
1.3.3. Ошибки сети и методы минимизации их…………………………………………. 27
1.3.4. Мониторинг состояния нейронной сети. …………………………………………. 31
2. Практическая часть ………………………………………………………………………………………… 33
2.1. Выбор среды моделирования ……………………………………………………………….. 33
2.2. Метод исторического моделирования VaR дельта-нормальным способом на
примере акций индекса Dow Jones ………………………………………………………………………. 33
2.3. Моделирование нейронной сети …………………………………………………………… 38
3. Социальная ответственность …………………………………………………………………………… 47
3.1. Правовые и организационные вопросы обеспечения безопасности ………….. 48
3.1.1. Специальные (характерные для проектируемой рабочей зоны) правовые
нормы трудового законодательства …………………………………………………………………….. 48
3.1.2. Организационные мероприятия при компоновке рабочей зоны ………… 49
3.2. Производственная безопасность …………………………………………………………… 50
3.2.1. Анализ вредных и опасных факторов, которые могут возникнуть на
рабочем месте исследователя ……………………………………………………………………………… 50
3.2.2. Обоснование мероприятий по защите персонала предприятия от
действия опасных и вредных факторов ……………………………………………………………….. 59
3.3. Экологическая безопасность ………………………………………………………………… 60
3.3.1. Анализ влияния объекта исследования на окружающую среду …………. 60
3.3.2. Обоснование мероприятий по защите окружающей среды ……………….. 60
3.4. Безопасность в чрезвычайных ситуациях ………………………………………………. 61
3.4.1. Анализ вероятных ЧС, которые может инициировать объект
исследований…………………………………………………………………………………………………….. 61
3.4.2. Обоснование мероприятий по предотвращению ЧС и разработка
порядка действия в случае возникновения ЧС ……………………………………………………… 62
3.5. Выводы и рекомендации………………………………………………………………………. 64
4. Оценка коммерческого потенциала и перспективности проведения научных
исследований с позиции ресурсоэффективности и ресурсосбережения ………………….. 65
4.1. Потенциальные потребители результатов исследования …………………………. 65
4.2. Анализ конкурентных технических решений …………………………………………. 65
4.3. SWOT-анализ ……………………………………………………………………………………… 68
4.4. Инициация проекта ……………………………………………………………………………… 70
4.5. Определение трудоемкости работ …………………………………………………………. 71
4.6. Бюджет научно-технического исследования ………………………………………….. 74
4.6.1. Расчёт материальных затрат НТИ …………………………………………………… 75
4.6.2. Основная заработная плата ……………………………………………………………. 76
4.6.3. Дополнительная заработная плата ………………………………………………….. 77
4.6.4. Отчисления во внебюджетные фонды …………………………………………….. 78
4.6.5. Накладные расходы ………………………………………………………………………. 78
4.6.6. Формирование бюджета затрат НТИ ………………………………………………. 79
4.7. Реестр рисков проекта …………………………………………………………………………. 79
4.8. Оценка сравнительной эффективности исследования …………………………….. 80
4.9 Оценка абсолютной эффективности исследования ………………………………….. 83
4.10. Выводы …………………………………………………………………………………………….. 89
Заключение ………………………………………………………………………………………………………. 90
Список использованных источников …………………………………………………………………… 91
Приложение 1……………………………………………………………………………………………………. 94
Приложение 2………………………………………………………………………………………………….. 112
Приложение 3………………………………………………………………………………………………….. 114
Приложение 4………………………………………………………………………………………………….. 121

Актуальность. Недавние финансовые кризисы усилили
необходимость статистической меры, которая могла бы позволить
экономистам, практикам и регулирующим органам оценивать финансовые
риски на ежедневной основе. Самая популярная мера для оценки
финансового риска – Value-at-Risk (VaR).
Существует множество различных подходов к попыткам
минимизировать и спрогнозировать риски на финансовых рынках, в том
числе с использованием различных модификаций модели VaR. На
сегодняшний день вопрос об оценки и минимизации рисков остаётся по-
прежнему актуальным, в особенности в связи с дестабилизирующими
факторами текущую рыночную ситуацию, вызывающими повышенную
волатильность показателей финансового рынка.
Целью магистерской диссертации является оценка финансовых
рисков VaR и CVaR для акций индекса Dow Jones с помощью нейронных
сетей.
Для достижения поставленной цели необходимо решить следующие
задачи:
1. В рамках исторического моделирования рассчитать выборочные
оценки уровней VaR, CVaR.
2. Построить и обучить многослойную нейронную сеть с сигмоидной
функцией активации.
3. Провести прогнозирование будущих значений индекса Dow Jones
на основе исторических данных с 2018 года.
Основные термины:
Value-at-Risk (VaR) – это статистическая мера, которая предполагает,
что если рыночные условия будут нормальными в течение определенного
периода времени, максимальные потери портфеля (или финансового
инструмента) не будут превышать оценку VaR, и это статистически
достоверно при определенном уровне доверия (обычно 95% или 99%)
Conditional Value at Risk (CVaR) является мерой оценки риска, которая
количественно определяет величину хвостового риска, который имеет
инвестиционный портфель.
Нейрон – это единица сети, которая на входе получает сигнал (входные
данные) на основании заданных параметров производит с ними
вычислительные действия и передает их либо на следующий слой, либо на
выход.
Сумматорная функция нейрона – представляет собой часть нейрона,
которая представляет собой сумму произведения входных данных на веса и
смещения.
Активационная функция нейрона – представляет собой часть нейрона,
которая отвечает за активацию нейрона и построение прогнозных данных.
Многослойный перцептрон – нейронная сеть, состоящая из слоев,
каждый из которых состоит из элементов – нейронов (точнее их моделей).
Градиент – это вектор, который определяет крутизну склона и
указывает его направление относительно какой либо из точек на поверхности
или графике.
Переобучение – это состояние нейросети, когда она перенасыщена
данными, иначе говоря, сеть не прослеживает закономерности, а просто
запоминает и «зубрит» правильные ответы.
Перекрёстная проверка (кросс-валидация, Cross-validation) – метод
оценки аналитической модели и её поведения на независимых данных.

В результате выполненной работы получены следующие основные
результаты:
1. методом исторического моделирования были рассчитаны
показатели VaR для портфеля акций Dow Jones за период с 2018
года;
2. была построена многослойная нейронная сеть с сигмоидной
активационной функцией, программная реализация написана на
языке Python 3.7;
3. правильность обучения нейронной сети была проверена методом
кросс-валидации. Кроме этого, были рассчитаны средние и
медианные ошибки прогнозов сети. Показано, что по всем акциям
индекса Dow Jones ошибка не превосходит 1,5% в равномерной
норме.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет