Top.Mail.Ru

Оценка финансовых рисков VaR и CVaR для акций индекса Dow Jones с помощью нейронных сетей

Грязнов, Алексей Дмитриевич Отделение экспериментальной физики (ОЭФ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объект исследования – оценка рисков инвестиций на финансовых рынках с помощью показателей VaR и CVaR. Данные меры риска будут смоделированы с помощью нейронных сетей на языке программирования Python 3.7. Модель нейронных сетей будет обучаться и строить прогнозные данные на исторических данных о котировках акций, входящих в состав индекса Dow Jones.

Введение …………………………………………………………………………………………………………… 10
Основные термины: …………………………………………………………………………………………… 11
1. Теоретическая часть……………………………………………………………………………………….. 12
1.1. Обзор существующих методов и алгоритмов решения задачи. ………………… 12
1.2. Оценка рисков. ……………………………………………………………………………………. 16
1.2.1. Value-at-Risk (VaR) ……………………………………………………………………….. 16
1.2.2. Conditional Value-at-Risk (CVaR) ……………………………………………………. 20
1.3. Модель нейронной сети ……………………………………………………………………….. 21
1.3.1. Нейронные сети. Основные понятия ………………………………………………. 21
1.3.2. Многослойный перцептрон. Виды и ключевые понятия …………………… 26
1.3.3. Ошибки сети и методы минимизации их…………………………………………. 27
1.3.4. Мониторинг состояния нейронной сети. …………………………………………. 31
2. Практическая часть ………………………………………………………………………………………… 33
2.1. Выбор среды моделирования ……………………………………………………………….. 33
2.2. Метод исторического моделирования VaR дельта-нормальным способом на
примере акций индекса Dow Jones ………………………………………………………………………. 33
2.3. Моделирование нейронной сети …………………………………………………………… 38
3. Социальная ответственность …………………………………………………………………………… 47
3.1. Правовые и организационные вопросы обеспечения безопасности ………….. 48
3.1.1. Специальные (характерные для проектируемой рабочей зоны) правовые
нормы трудового законодательства …………………………………………………………………….. 48
3.1.2. Организационные мероприятия при компоновке рабочей зоны ………… 49
3.2. Производственная безопасность …………………………………………………………… 50
3.2.1. Анализ вредных и опасных факторов, которые могут возникнуть на
рабочем месте исследователя ……………………………………………………………………………… 50
3.2.2. Обоснование мероприятий по защите персонала предприятия от
действия опасных и вредных факторов ……………………………………………………………….. 59
3.3. Экологическая безопасность ………………………………………………………………… 60
3.3.1. Анализ влияния объекта исследования на окружающую среду …………. 60
3.3.2. Обоснование мероприятий по защите окружающей среды ……………….. 60
3.4. Безопасность в чрезвычайных ситуациях ………………………………………………. 61
3.4.1. Анализ вероятных ЧС, которые может инициировать объект
исследований…………………………………………………………………………………………………….. 61
3.4.2. Обоснование мероприятий по предотвращению ЧС и разработка
порядка действия в случае возникновения ЧС ……………………………………………………… 62
3.5. Выводы и рекомендации………………………………………………………………………. 64
4. Оценка коммерческого потенциала и перспективности проведения научных
исследований с позиции ресурсоэффективности и ресурсосбережения ………………….. 65
4.1. Потенциальные потребители результатов исследования …………………………. 65
4.2. Анализ конкурентных технических решений …………………………………………. 65
4.3. SWOT-анализ ……………………………………………………………………………………… 68
4.4. Инициация проекта ……………………………………………………………………………… 70
4.5. Определение трудоемкости работ …………………………………………………………. 71
4.6. Бюджет научно-технического исследования ………………………………………….. 74
4.6.1. Расчёт материальных затрат НТИ …………………………………………………… 75
4.6.2. Основная заработная плата ……………………………………………………………. 76
4.6.3. Дополнительная заработная плата ………………………………………………….. 77
4.6.4. Отчисления во внебюджетные фонды …………………………………………….. 78
4.6.5. Накладные расходы ………………………………………………………………………. 78
4.6.6. Формирование бюджета затрат НТИ ………………………………………………. 79
4.7. Реестр рисков проекта …………………………………………………………………………. 79
4.8. Оценка сравнительной эффективности исследования …………………………….. 80
4.9 Оценка абсолютной эффективности исследования ………………………………….. 83
4.10. Выводы …………………………………………………………………………………………….. 89
Заключение ………………………………………………………………………………………………………. 90
Список использованных источников …………………………………………………………………… 91
Приложение 1……………………………………………………………………………………………………. 94
Приложение 2………………………………………………………………………………………………….. 112
Приложение 3………………………………………………………………………………………………….. 114
Приложение 4………………………………………………………………………………………………….. 121

Актуальность. Недавние финансовые кризисы усилили
необходимость статистической меры, которая могла бы позволить
экономистам, практикам и регулирующим органам оценивать финансовые
риски на ежедневной основе. Самая популярная мера для оценки
финансового риска – Value-at-Risk (VaR).
Существует множество различных подходов к попыткам
минимизировать и спрогнозировать риски на финансовых рынках, в том
числе с использованием различных модификаций модели VaR. На
сегодняшний день вопрос об оценки и минимизации рисков остаётся по-
прежнему актуальным, в особенности в связи с дестабилизирующими
факторами текущую рыночную ситуацию, вызывающими повышенную
волатильность показателей финансового рынка.
Целью магистерской диссертации является оценка финансовых
рисков VaR и CVaR для акций индекса Dow Jones с помощью нейронных
сетей.
Для достижения поставленной цели необходимо решить следующие
задачи:
1. В рамках исторического моделирования рассчитать выборочные
оценки уровней VaR, CVaR.
2. Построить и обучить многослойную нейронную сеть с сигмоидной
функцией активации.
3. Провести прогнозирование будущих значений индекса Dow Jones
на основе исторических данных с 2018 года.
Основные термины:
Value-at-Risk (VaR) – это статистическая мера, которая предполагает,
что если рыночные условия будут нормальными в течение определенного
периода времени, максимальные потери портфеля (или финансового
инструмента) не будут превышать оценку VaR, и это статистически
достоверно при определенном уровне доверия (обычно 95% или 99%)
Conditional Value at Risk (CVaR) является мерой оценки риска, которая
количественно определяет величину хвостового риска, который имеет
инвестиционный портфель.
Нейрон – это единица сети, которая на входе получает сигнал (входные
данные) на основании заданных параметров производит с ними
вычислительные действия и передает их либо на следующий слой, либо на
выход.
Сумматорная функция нейрона – представляет собой часть нейрона,
которая представляет собой сумму произведения входных данных на веса и
смещения.
Активационная функция нейрона – представляет собой часть нейрона,
которая отвечает за активацию нейрона и построение прогнозных данных.
Многослойный перцептрон – нейронная сеть, состоящая из слоев,
каждый из которых состоит из элементов – нейронов (точнее их моделей).
Градиент – это вектор, который определяет крутизну склона и
указывает его направление относительно какой либо из точек на поверхности
или графике.
Переобучение – это состояние нейросети, когда она перенасыщена
данными, иначе говоря, сеть не прослеживает закономерности, а просто
запоминает и «зубрит» правильные ответы.
Перекрёстная проверка (кросс-валидация, Cross-validation) – метод
оценки аналитической модели и её поведения на независимых данных.

В результате выполненной работы получены следующие основные
результаты:
1. методом исторического моделирования были рассчитаны
показатели VaR для портфеля акций Dow Jones за период с 2018
года;
2. была построена многослойная нейронная сеть с сигмоидной
активационной функцией, программная реализация написана на
языке Python 3.7;
3. правильность обучения нейронной сети была проверена методом
кросс-валидации. Кроме этого, были рассчитаны средние и
медианные ошибки прогнозов сети. Показано, что по всем акциям
индекса Dow Jones ошибка не превосходит 1,5% в равномерной
норме.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет