Подготовка исходных данных для построения кредитного скоринга

Инхиреева, Татьяна Александровна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объектом исследования в качестве тестовой задачи рассматривается данные о кредитоспособности заемщиков.
Предметом исследования является методика обработки данных для кредитного скоринга.
Цель данной работы – разработка и исследование методики обработки данных для кредитного скоринга.

Объект и предмет исследования

Дата выдачи задания на выполнение выпускной
квалификационной работы по линейному графику

Задание выдал руководитель:
Должность ФИО Ученая степень, Подпись Дата
звание

доцент ОИТ ИШИТР Губин Е.И. к.ф.-м.н

Задание принял к исполнению студент:
Группа ФИО Подпись Дата

В данном разделе рассмотрены основные вопросы соблюдения прав
персонала на труд, выполнения правил к безопасности труда, промышленной
безопасности, экологии и ресурсосбережения. Установлено, что рабочее место
исполнителя удовлетворяет требованиям безопасности и гигиены труда во время
реализации проекта, а также вредное воздействие объекта исследования на
окружающую среду не превышает норму.
Заключение
В ходе выполнения выпускной квалификационной работы создана
методика подготовки данных для построения кредитного скоринга, которая
включает в себя обязательные этапы: разбиение данных, очистка данных,
трансформация данных и выбор переменных. Полученная методика реализована
в программных пакетах Python, SAS, SAS Enterprise Miner. Исследование
методики проводилось на примере анкетных данных заемщиков.
Проведено сравнение точности результатов, полученных в различных
пакетах, и результатов классификации без подготовки данных и с применением
предложенной методики подготовки данных.
Качественно во всех случаях применение методики повышает точность
полученных результатов на 10-18%. Наибольшую точность (75%)
демонстрирует решение, полученное с помощью SAS Enterprise Miner.
В будущем планируется исследование методики на большем количестве
данных и в дальнейшем внедрение.
Список публикаций студента
1. Inkhireeva T. A. , Zimin V. P. Quasianalytical solution of inhomogeneous
differential equation with cubic nonlinearity // Advances in Computer Science
Research. – 2017 – Vol. 72. – p. 103-107
2. Kazakyavichyus I.S., Inkhireeva T. A. Gender recognition by voice //
Электронные средства и системы управления: материалы докладов XIV
Международной научно-практической конференции: в 2 ч. – Ч. 2., Томск,
28-30 Ноября 2018. – Томск: В-Спектр, 2018 – C. 282-286
3. Инхиреева Т. А. , Козловских А. В. Квазианалитическое решение
неоднородного дифференциального уравнения с кубической
нелинейностью // Молодежь и современные информационные
технологии: сборник трудов XV Международной научно- практической
конференции студентов, аспирантов и молодых ученых , Томск, 4-7
Декабря 2017. – Томск: ТПУ, 2018 – C. 43-44
4. Inkhireeva T.A. Data mining classification techniques for credit scoring in
banks // Математическое и программное обеспечение информационных,
технических и экономических систем: материалы VI международной
молодежной научной конференции, Томск, 24-26 мая 2018 г. – Томск:
ТГУ, 2018 – С. 362-365

1.Сергеевич С.А. Построение скоринговых карт с использованием модели
логистической регрессии // Интернет-журнал Науковедение. 2014. Vol. 2.
2.Anshu B. Data Preprocessing Techniques for Data Mining // Data Mining
Techniques and Tools for Knowledge Discovery in Agricultural Datasets. New
Delhi, 2011. P. 6.
3.Abbott D. Applied Predictive Analytics: Principles and Techniques for the
Professional Data Analyst. Indianapolis: Wiley, 2014. 427 p.
4.Полищук, Ф.С., Романов А.Ю. КРЕДИТНЫЙ СКОРИНГ: РАЗРАБОТКА
РЕЙТИНГОВОЙСИСТЕМЫОЦЕНКИРИСКАКРЕДИТОВАНИЯ
ФИЗИЧЕСКИХЛИЦ//Новыеинформационныетехнологиив
автоматизированных системах. 2016. Vol. 19.
5.Федресурс. Единый федеральный реестр юридически значимых сведений о
фактахдеятельностиюридическихлиц,индивидуальных
предпринимателей и иных субъектов экономической деятельности
[Electronic resource] // В России за год число граждан-банкротов удвоилось.
2018.
6.Филатова Ю. Число несостоятельных граждан в России выросло в 1,5 раза,
потенциальных банкротов – на 6%. Москва, 2018. 4 p.
7.Piatetsky G. Knowledge Discovery Nuggets [Electronic resource] // CRISP-DM,
still the top methodology for analytics, data mining, or data science projects.
2014.P.1.URL:https://www.kdnuggets.com/2014/10/crisp-dm-top-
methodology-analytics-data-mining-data-science-projects.html(accessed:
25.05.2019).
8.IBM Corporation. IBM SPSS Modeler CRISP-DM Guide. Armonk, 2011. 45 p.
9.SAS Institute Inc. Introduction to SEMMA [Electronic resource]. 2018. URL:
https://documentation.sas.com/?docsetId=emref&docsetTarget=n061bzurmej4j
3n1jnj8bbjjm1a2.htm&docsetVersion=15.1&locale=en.
10.Ng A. Machine learning yearning. 5th ed. deeplearning.ai, 2018. 116 p.
11.Pedregosa F. et al. Scikit-learn: Machine Learning in {P}ython // J. Mach. Learn.
Res. 2011. Vol. 12. P. 2825–2830.
12.Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. 2001. Vol. 14.
13.Little R.J.A. A Test of Missing Completely at Random for Multivariate Data with
Missing Values // J. Am. Stat. Assoc. Taylor & Francis, 1988. Vol. 83, № 404.
P. 1198–1202.
14.RUBIN D.B. Inference and missing data // Biometrika. 1976. Vol. 63, № 3. P.
581–592.
15.Moritz S. et al. Comparison of different Methods for Univariate Time Series
Imputation in R.
16.SAS Institute Inc. Building Credit Scorecards Using Credit Scoring for SAS
Enterprise Miner. Cary, 2014. 21 p.
17.Zekic-Susac M., Sarlija N., Bensic M. Small business credit scoring: a
comparison of logistic regression, neural network, and decision tree models //
26th International Conference on Information Technology Interfaces, 2004.
2004. P. 265-270 Vol.1.
18.Svolba G. Data Preparation for Analytics Using SAS. SAS Institute Inc., 2015.
440 p.
19.Tischler R., Grosser T. Data Preparation – Refining Raw Data into Value. CXP
Group, 2017. 43 p.
20.Huang J. et al. An Empirical Analysis of Three-Stage Data-Preprocessing for
Analogy-Based Software Effort Estimation on the ISBSG Data // 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS).
2017. P. 442–449.
21.Nalić J., Švraka A. Importance of data pre-processing in credit scoring models
based on data mining approaches // 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO). 2018. P. 1046–1051.
22.García V., Marqués A.I., Sánchez J.S. Improving Risk Predictions by
Preprocessing Imbalanced Credit Data // Neural Inf. Process. 2012. Vol. 7664.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)