Подготовка исходных данных для построения кредитного скоринга

Инхиреева, Татьяна Александровна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объектом исследования в качестве тестовой задачи рассматривается данные о кредитоспособности заемщиков.
Предметом исследования является методика обработки данных для кредитного скоринга.
Цель данной работы – разработка и исследование методики обработки данных для кредитного скоринга.

Объект и предмет исследования

Дата выдачи задания на выполнение выпускной
квалификационной работы по линейному графику

Задание выдал руководитель:
Должность ФИО Ученая степень, Подпись Дата
звание

доцент ОИТ ИШИТР Губин Е.И. к.ф.-м.н

Задание принял к исполнению студент:
Группа ФИО Подпись Дата

В данном разделе рассмотрены основные вопросы соблюдения прав
персонала на труд, выполнения правил к безопасности труда, промышленной
безопасности, экологии и ресурсосбережения. Установлено, что рабочее место
исполнителя удовлетворяет требованиям безопасности и гигиены труда во время
реализации проекта, а также вредное воздействие объекта исследования на
окружающую среду не превышает норму.
Заключение
В ходе выполнения выпускной квалификационной работы создана
методика подготовки данных для построения кредитного скоринга, которая
включает в себя обязательные этапы: разбиение данных, очистка данных,
трансформация данных и выбор переменных. Полученная методика реализована
в программных пакетах Python, SAS, SAS Enterprise Miner. Исследование
методики проводилось на примере анкетных данных заемщиков.
Проведено сравнение точности результатов, полученных в различных
пакетах, и результатов классификации без подготовки данных и с применением
предложенной методики подготовки данных.
Качественно во всех случаях применение методики повышает точность
полученных результатов на 10-18%. Наибольшую точность (75%)
демонстрирует решение, полученное с помощью SAS Enterprise Miner.
В будущем планируется исследование методики на большем количестве
данных и в дальнейшем внедрение.
Список публикаций студента
1. Inkhireeva T. A. , Zimin V. P. Quasianalytical solution of inhomogeneous
differential equation with cubic nonlinearity // Advances in Computer Science
Research. – 2017 – Vol. 72. – p. 103-107
2. Kazakyavichyus I.S., Inkhireeva T. A. Gender recognition by voice //
Электронные средства и системы управления: материалы докладов XIV
Международной научно-практической конференции: в 2 ч. – Ч. 2., Томск,
28-30 Ноября 2018. – Томск: В-Спектр, 2018 – C. 282-286
3. Инхиреева Т. А. , Козловских А. В. Квазианалитическое решение
неоднородного дифференциального уравнения с кубической
нелинейностью // Молодежь и современные информационные
технологии: сборник трудов XV Международной научно- практической
конференции студентов, аспирантов и молодых ученых , Томск, 4-7
Декабря 2017. – Томск: ТПУ, 2018 – C. 43-44
4. Inkhireeva T.A. Data mining classification techniques for credit scoring in
banks // Математическое и программное обеспечение информационных,
технических и экономических систем: материалы VI международной
молодежной научной конференции, Томск, 24-26 мая 2018 г. – Томск:
ТГУ, 2018 – С. 362-365

1.Сергеевич С.А. Построение скоринговых карт с использованием модели
логистической регрессии // Интернет-журнал Науковедение. 2014. Vol. 2.
2.Anshu B. Data Preprocessing Techniques for Data Mining // Data Mining
Techniques and Tools for Knowledge Discovery in Agricultural Datasets. New
Delhi, 2011. P. 6.
3.Abbott D. Applied Predictive Analytics: Principles and Techniques for the
Professional Data Analyst. Indianapolis: Wiley, 2014. 427 p.
4.Полищук, Ф.С., Романов А.Ю. КРЕДИТНЫЙ СКОРИНГ: РАЗРАБОТКА
РЕЙТИНГОВОЙСИСТЕМЫОЦЕНКИРИСКАКРЕДИТОВАНИЯ
ФИЗИЧЕСКИХЛИЦ//Новыеинформационныетехнологиив
автоматизированных системах. 2016. Vol. 19.
5.Федресурс. Единый федеральный реестр юридически значимых сведений о
фактахдеятельностиюридическихлиц,индивидуальных
предпринимателей и иных субъектов экономической деятельности
[Electronic resource] // В России за год число граждан-банкротов удвоилось.
2018.
6.Филатова Ю. Число несостоятельных граждан в России выросло в 1,5 раза,
потенциальных банкротов – на 6%. Москва, 2018. 4 p.
7.Piatetsky G. Knowledge Discovery Nuggets [Electronic resource] // CRISP-DM,
still the top methodology for analytics, data mining, or data science projects.
2014.P.1.URL:https://www.kdnuggets.com/2014/10/crisp-dm-top-
methodology-analytics-data-mining-data-science-projects.html(accessed:
25.05.2019).
8.IBM Corporation. IBM SPSS Modeler CRISP-DM Guide. Armonk, 2011. 45 p.
9.SAS Institute Inc. Introduction to SEMMA [Electronic resource]. 2018. URL:
https://documentation.sas.com/?docsetId=emref&docsetTarget=n061bzurmej4j
3n1jnj8bbjjm1a2.htm&docsetVersion=15.1&locale=en.
10.Ng A. Machine learning yearning. 5th ed. deeplearning.ai, 2018. 116 p.
11.Pedregosa F. et al. Scikit-learn: Machine Learning in {P}ython // J. Mach. Learn.
Res. 2011. Vol. 12. P. 2825–2830.
12.Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. 2001. Vol. 14.
13.Little R.J.A. A Test of Missing Completely at Random for Multivariate Data with
Missing Values // J. Am. Stat. Assoc. Taylor & Francis, 1988. Vol. 83, № 404.
P. 1198–1202.
14.RUBIN D.B. Inference and missing data // Biometrika. 1976. Vol. 63, № 3. P.
581–592.
15.Moritz S. et al. Comparison of different Methods for Univariate Time Series
Imputation in R.
16.SAS Institute Inc. Building Credit Scorecards Using Credit Scoring for SAS
Enterprise Miner. Cary, 2014. 21 p.
17.Zekic-Susac M., Sarlija N., Bensic M. Small business credit scoring: a
comparison of logistic regression, neural network, and decision tree models //
26th International Conference on Information Technology Interfaces, 2004.
2004. P. 265-270 Vol.1.
18.Svolba G. Data Preparation for Analytics Using SAS. SAS Institute Inc., 2015.
440 p.
19.Tischler R., Grosser T. Data Preparation – Refining Raw Data into Value. CXP
Group, 2017. 43 p.
20.Huang J. et al. An Empirical Analysis of Three-Stage Data-Preprocessing for
Analogy-Based Software Effort Estimation on the ISBSG Data // 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS).
2017. P. 442–449.
21.Nalić J., Švraka A. Importance of data pre-processing in credit scoring models
based on data mining approaches // 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO). 2018. P. 1046–1051.
22.García V., Marqués A.I., Sánchez J.S. Improving Risk Predictions by
Preprocessing Imbalanced Credit Data // Neural Inf. Process. 2012. Vol. 7664.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Татьяна П.
    4.2 (6 отзывов)
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки ... Читать все
    Помогаю студентам с решением задач по ТОЭ и физике на протяжении 9 лет. Пишу диссертацию на соискание степени кандидата технических наук, имею опыт годовой стажировки в одном из крупнейших университетов Германии.
    #Кандидатские #Магистерские
    9 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)