Подготовка исходных данных для построения кредитного скоринга

Инхиреева, Татьяна Александровна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объектом исследования в качестве тестовой задачи рассматривается данные о кредитоспособности заемщиков.
Предметом исследования является методика обработки данных для кредитного скоринга.
Цель данной работы – разработка и исследование методики обработки данных для кредитного скоринга.

Объект и предмет исследования

Дата выдачи задания на выполнение выпускной
квалификационной работы по линейному графику

Задание выдал руководитель:
Должность ФИО Ученая степень, Подпись Дата
звание

доцент ОИТ ИШИТР Губин Е.И. к.ф.-м.н

Задание принял к исполнению студент:
Группа ФИО Подпись Дата

В данном разделе рассмотрены основные вопросы соблюдения прав
персонала на труд, выполнения правил к безопасности труда, промышленной
безопасности, экологии и ресурсосбережения. Установлено, что рабочее место
исполнителя удовлетворяет требованиям безопасности и гигиены труда во время
реализации проекта, а также вредное воздействие объекта исследования на
окружающую среду не превышает норму.
Заключение
В ходе выполнения выпускной квалификационной работы создана
методика подготовки данных для построения кредитного скоринга, которая
включает в себя обязательные этапы: разбиение данных, очистка данных,
трансформация данных и выбор переменных. Полученная методика реализована
в программных пакетах Python, SAS, SAS Enterprise Miner. Исследование
методики проводилось на примере анкетных данных заемщиков.
Проведено сравнение точности результатов, полученных в различных
пакетах, и результатов классификации без подготовки данных и с применением
предложенной методики подготовки данных.
Качественно во всех случаях применение методики повышает точность
полученных результатов на 10-18%. Наибольшую точность (75%)
демонстрирует решение, полученное с помощью SAS Enterprise Miner.
В будущем планируется исследование методики на большем количестве
данных и в дальнейшем внедрение.
Список публикаций студента
1. Inkhireeva T. A. , Zimin V. P. Quasianalytical solution of inhomogeneous
differential equation with cubic nonlinearity // Advances in Computer Science
Research. – 2017 – Vol. 72. – p. 103-107
2. Kazakyavichyus I.S., Inkhireeva T. A. Gender recognition by voice //
Электронные средства и системы управления: материалы докладов XIV
Международной научно-практической конференции: в 2 ч. – Ч. 2., Томск,
28-30 Ноября 2018. – Томск: В-Спектр, 2018 – C. 282-286
3. Инхиреева Т. А. , Козловских А. В. Квазианалитическое решение
неоднородного дифференциального уравнения с кубической
нелинейностью // Молодежь и современные информационные
технологии: сборник трудов XV Международной научно- практической
конференции студентов, аспирантов и молодых ученых , Томск, 4-7
Декабря 2017. – Томск: ТПУ, 2018 – C. 43-44
4. Inkhireeva T.A. Data mining classification techniques for credit scoring in
banks // Математическое и программное обеспечение информационных,
технических и экономических систем: материалы VI международной
молодежной научной конференции, Томск, 24-26 мая 2018 г. – Томск:
ТГУ, 2018 – С. 362-365

1.Сергеевич С.А. Построение скоринговых карт с использованием модели
логистической регрессии // Интернет-журнал Науковедение. 2014. Vol. 2.
2.Anshu B. Data Preprocessing Techniques for Data Mining // Data Mining
Techniques and Tools for Knowledge Discovery in Agricultural Datasets. New
Delhi, 2011. P. 6.
3.Abbott D. Applied Predictive Analytics: Principles and Techniques for the
Professional Data Analyst. Indianapolis: Wiley, 2014. 427 p.
4.Полищук, Ф.С., Романов А.Ю. КРЕДИТНЫЙ СКОРИНГ: РАЗРАБОТКА
РЕЙТИНГОВОЙСИСТЕМЫОЦЕНКИРИСКАКРЕДИТОВАНИЯ
ФИЗИЧЕСКИХЛИЦ//Новыеинформационныетехнологиив
автоматизированных системах. 2016. Vol. 19.
5.Федресурс. Единый федеральный реестр юридически значимых сведений о
фактахдеятельностиюридическихлиц,индивидуальных
предпринимателей и иных субъектов экономической деятельности
[Electronic resource] // В России за год число граждан-банкротов удвоилось.
2018.
6.Филатова Ю. Число несостоятельных граждан в России выросло в 1,5 раза,
потенциальных банкротов – на 6%. Москва, 2018. 4 p.
7.Piatetsky G. Knowledge Discovery Nuggets [Electronic resource] // CRISP-DM,
still the top methodology for analytics, data mining, or data science projects.
2014.P.1.URL:https://www.kdnuggets.com/2014/10/crisp-dm-top-
methodology-analytics-data-mining-data-science-projects.html(accessed:
25.05.2019).
8.IBM Corporation. IBM SPSS Modeler CRISP-DM Guide. Armonk, 2011. 45 p.
9.SAS Institute Inc. Introduction to SEMMA [Electronic resource]. 2018. URL:
https://documentation.sas.com/?docsetId=emref&docsetTarget=n061bzurmej4j
3n1jnj8bbjjm1a2.htm&docsetVersion=15.1&locale=en.
10.Ng A. Machine learning yearning. 5th ed. deeplearning.ai, 2018. 116 p.
11.Pedregosa F. et al. Scikit-learn: Machine Learning in {P}ython // J. Mach. Learn.
Res. 2011. Vol. 12. P. 2825–2830.
12.Kohavi R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection. 2001. Vol. 14.
13.Little R.J.A. A Test of Missing Completely at Random for Multivariate Data with
Missing Values // J. Am. Stat. Assoc. Taylor & Francis, 1988. Vol. 83, № 404.
P. 1198–1202.
14.RUBIN D.B. Inference and missing data // Biometrika. 1976. Vol. 63, № 3. P.
581–592.
15.Moritz S. et al. Comparison of different Methods for Univariate Time Series
Imputation in R.
16.SAS Institute Inc. Building Credit Scorecards Using Credit Scoring for SAS
Enterprise Miner. Cary, 2014. 21 p.
17.Zekic-Susac M., Sarlija N., Bensic M. Small business credit scoring: a
comparison of logistic regression, neural network, and decision tree models //
26th International Conference on Information Technology Interfaces, 2004.
2004. P. 265-270 Vol.1.
18.Svolba G. Data Preparation for Analytics Using SAS. SAS Institute Inc., 2015.
440 p.
19.Tischler R., Grosser T. Data Preparation – Refining Raw Data into Value. CXP
Group, 2017. 43 p.
20.Huang J. et al. An Empirical Analysis of Three-Stage Data-Preprocessing for
Analogy-Based Software Effort Estimation on the ISBSG Data // 2017 IEEE
International Conference on Software Quality, Reliability and Security (QRS).
2017. P. 442–449.
21.Nalić J., Švraka A. Importance of data pre-processing in credit scoring models
based on data mining approaches // 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO). 2018. P. 1046–1051.
22.García V., Marqués A.I., Sánchez J.S. Improving Risk Predictions by
Preprocessing Imbalanced Credit Data // Neural Inf. Process. 2012. Vol. 7664.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)