Применение генеративно-состязательных сетей в задаче генерации сложных музыкальных произведений

Колобов, Ростислав Сергеевич Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В выпускной квалификационной работе представлены исследования применения сверточных генеративно состязательных сетей в задаче генерации сложных музыкальных произведений. Разработаны программы, позволяющие автоматизировать процесс получения и подготовки данных для обучения. Проведены эксперименты с различными типами генеративно состязательных сетей и автоэнкодеров. А завершении работы были проанализированы результаты генерации, а также предложен ряд экспериментов по улучшению качества сгенерированных данных.

Введение…………………………………………………………………………………………… 12

1. Обзор литературы……………………………………………………………………….. 13

1.1 Генеративно-состязательные сети………………………………………….. 13

1.2 MuseGAN ……………………………………………………………………………… 14

1.3 WaveGAN ……………………………………………………………………………… 15

1.4 GANSynth ……………………………………………………………………………… 17

2. Получение и подготовка данных для обучения ……………………………. 20

2.1 Загрузка неподготовленных данных из видеохостинга Youtube 20

2.2 Подготовка данных ……………………………………………………………….. 21

2.2.1 Преобразование аудио в одинаковый формат …………………… 21

2.2.2 Разделение аудио на музыкальные составляющие ……………. 21

2.2.3 Удаление шумов из вокальной партии ……………………………… 22

2.2.4 Разделение аудио на отрезки, содержащие вокал ……………… 22

2.2.5 Извлечение акустических характеристик. Спектрограммы. . 23

3. Эксперименты с АЕ и ВАЕ …………………………………………………………. 27

3.1 Обучение сети автоэнкодера …………………………………………………. 27

3.2 Обучение сети вариационного автоэнкодера………………………….. 29

4. Эксперименты с сверточными генеративно-состязательными сетями
…………………………………………………………………………..32

4.1 Глубокая сверточная генеративно-состязательная сеть ………….. 32

4.2 Эксперименты с генеративно-состязательной сетью,
использующей функцию потерь Вассерштейна и градиентный штраф . 33

5. Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение …………………………………………………………………………… 39

6. Социальная ответственность……………………………………………………….. 54
Заключение ………………………………………………………………………………………. 68

Список источников …………………………………………………………………………… 69

Приложение А (Downloading and preparing data for training) ………………. 73

Приложение Б …………………………………………………………………………………… 85

Синтез звука для определенных областей имеет множество
практических применений в творческом звуковом дизайне для музыки и кино.
Музыканты и артисты просматривают большие базы данных звуковых
эффектов, чтобы найти конкретные аудиозаписи, подходящие для конкретных
сценариев. Эта стратегия кропотлива и может не дать результатов, если
идеальный звуковой эффект отсутствует в библиотеке.
Несмотря на огромное, постоянное растущее количество музыкального
контента в интернете, создание новых музыкальных произведений все еще
остается актуальным, как актуально создание произведений других видов
искусства. Появляются и исчезают новые жанры, исполнители и музыканты.
Вместе с тем становится все более заметным рост интереса к автоматической
генерации музыкальных произведений. Однако существующие на текущий
момент результаты в большинстве случаев являются монофоническими или
используют синтезированные звуки музыкальных инструментов. Это в свою
очередь оставляет большой простор для исследований.
В данной работе рассматриваются современные подходы к генерации
музыкальных произведений с помощью генеративно-состязательных сетей, их
особенности. Рассматривается процесс автоматизированного получения, и
подготовки данных для обучения. Также, исследуется возможность
представления данных, посредством извлечения скрытого вектора из
обученного вариационного автоэнкодера. Проводятся эксперименты по
созданию музыки с помощью генеративно-состязательных сетей.
Объектом исследования является изучение моделей генеративно-
состязательных сетей для генерации аудиопоследовательностей.
Предмет исследования: исследование возможностей генеративно-
состязательных сетей создавать реалистичные многоканальные
аудиопоследовательности.

В ходе проделанной работы были проведены эксперименты с
генеративно-состязательными сетями в задаче генерации сложных
музыкальных произведений. Для этого был разработан ряд скриптов,
позволяющих автоматизировать процесс получения и подготовки данных.
Проведены эксперименты с автоэнкодерами и вариационными автоэнкодерами,
которые показали, что автоэнкодеры достаточно хорошо могут
реконструировать спектрограмм вокальной партии, однако даже с применением
вариационных автоэнкодеров не удается создать качественное непрерывное
распределение, из которого можно было бы генерировать новые композиции
или использовать в качестве скрытого представления. Вокальная партия
оказалась слишком сложной для обычной архитектуры генеративно-
состязательной сети, которая не смогла сойтись и обучение пришлось
остановить. В противовес этому генеративно-состязательная сеть с
использованием функции потерь Вассерштейна и штрафом градиента смогла
справиться с генерацией вокальной и инструментальных партий, пусть и
добавив к ним заметное количество шума. Слишком большое разнообразие
партий остальных инструментов не позволило сети изучить их распределение
достаточно хорошо, чтобы она могла сгенерировать хотя бы одну партию,
похожую на реальную.
В дальнейшем предполагается провести ряд экспериментов, которые
приводятся в конце раздела 4. Предполагается, что их комбинация может
значительно повысить генеративные возможности сети и позволить сделать
генерацию управляемой и более качественной.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ

    Другие учебные работы по предмету