Применение гибридных подходов в разработке рекомендательных систем

Казаков Данил Игоревич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

На сегодняшний день существуют множество различных алгоритмов рекомендаций, которые основываются на разных предположениях и используют различную информацию. Каждый алгоритм имеет свои достоинства и недостатки. В данной работе предпринимаются попытки объединить несколько различных подходов в одну рекомендательную систему.

В данной работе предлагается архитектура двухуровневой гибридной рекомендательной системы на основе факторизационных машин в качестве первого уровня и градиентного бустинга над деревьями решений в качестве второго уровня системы. Данная архитектура строится в рамках задачи рекомендации фильмов.

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Постановка задачи . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Обзор литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Глава 1. Коллаборативная фильтрация . . . . . . . . . . . . . . . . . 7
1.1 Фукции оценки качества ранжирования . . . . . . . . . . . . . 7
1.2 Матричное разложение . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Факторизационные машины . . . . . . . . . . . . . . . . . . . . 9
1.4 Модель LightFM . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Обучение ранжированию . . . . . . . . . . . . . . . . . . . . . 12
Глава 2. Контентная модель . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Деревья принятия решений . . . . . . . . . . . . . . . . . . . . 15
2.2 Градиентный бустинг в задаче рекомендации . . . . . . . . . . 18
Глава 3. Гибридная рекомендательная система . . . . . . . . . . . . . 22
3.1 Гибридизация . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Набор данных . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Построение решения задачи рекомендации . . . . . . . . . . . 24
3.4 Результаты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Выводы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Список литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Приложение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

На сегодняшний день количество информации и сервисов, предостав- лющих её, стремительно растут. И пользователь сталкивается с проблемой выбора релевантной для него информации. Эту задачу и решают рекомен- дательные системы.
Определение. Рекомендательные системы – одно из приложений ма- шинного обучения, задачей которой является предоставление пользовате- лю рекомендаций относительно товаров, которые могли бы ему понравить- ся.
Приведем несколько примеров рекомендательных систем из разных областей:
• Видеостриминговые сервисы: Netflix, YouTube. • Музыкальные сервисы: Spotify, Apple Music.
• Новостные сайты: BuzzFeed.
• Социальные сети: Facebook.
Большинство данных сервисов становятся популярными именно бла- годаря системам рекомендаций. Например, музыкальный сервис Spotify 1 каждый день предлагает множество персонализированных подборок каж- дый день.
Наиболее популярными являются следующие 2 класса рекоменда- тельных систем:
• Ориентированные на контент. Такие системы ориентируются на харак- теристики объектов и профиле пользователя.
• Коллаборативная фильтрация. Данный подход учитывает только оцен- ки пользователей относительно объектов, с которыми пользователь уже провзаимодействовал. Основное предположение состоит в следую- щем: пользователи, которые одинаково оценивали какие-либо объекты, будут давать похожие оценки другим предметам в будущем.
В коллаборативной фильтрации также различают 2 типа оценок поль-
зователя объекту:
1 https://www.spotify.com
2
• Явная обратная связь. Пользователь явно сообщает свое мнение отно- сительно объекта, в виде, например, рейтинга. Рейтинги бывают либо бинарными (нравится/не нравится), либо в выраженными в некоторой шкале (например, от одной до пяти звёзд).
• Неявная обратная связь. В данном случае пользователь не сообщает явно свое предпочтение, но при этом система логирует взамодействие пользователя и объекта. Например, человек может полностью посмот- реть фильм несколько раз, но при этом явно не сообщать нравится ли ему данный фильм. И система может считать данное взаимодействие положительным.
Минусами неявной обратной связи можно считать тот факт, что мы можем лишь предполагать об истинных предпочтениях пользователя. С другой стороны, неявных откликов намного больше, так как не требуют ничего от пользователя.
В данной работе будут изучены ранжирующие алгоритмы разных ти- пов и все подходы будут исследованы в рамках данных, предоставленным одним онлайн-кинотеатром в рамках соревнования по машинному обуче- нию [15]. Организаторами соревнования были предоставлены данные по просмотрам, проставлениям рейтингов, добавления в избранное фильмов и сериалов. По данным необходимо построить рекомендательную систему и предсказать 20 наиболее релевантных фильмов для каждого пользователя. Функции оценки качества предсказаний будут рассмотрены ниже. Именно решение данной задачи и программная реализация являются основными аспектами данной работы.
Работа состоит из трех глав. В первой главе рассматривается кол- лаборативная фильтрация. Также изучается обобщение данного подхода – модель факторизационных машин, и конкретная реализация фактори- зационной модели LightFM [5]. Также рассматривается техника обучения ранжирования (англ. learning to rank). В качестве функции потерь изуча- ется WARP [6].
Во второй главе рассматривается модель деревьев принятия реше- ний и алгоритм градиентного бустинга над деревьями решений. В качестве функции потерь изучается функция LambdaRank [11].
В третьей главе предлагается архитектура гибридной двухуровнен- 3

вой рекомендательной системы на основе факторизационных машин и гра- диентного бустинга над деревьями решений. Также приводится подробной описание данной архитектуры, изучается структура данных [15], и приво- дится результат работы данной системы на действительных данных.

На сегодняшний день существуют множество различных алгоритмов
рекомендаций, которые основываются на разных предположениях и ис-
пользуют различную информацию. Каждый алгоритм имеет свои досто-
инства и недостатки. В данной работе предпринимаются попытки объеди-
нить несколько различных подходов в одну гибридную рекомендательную
систему. Данная система использует достоинства моделей коллаборативной
фильтрации и контентных моделей.
Эксперименты показывают, что гибридная двухуровневая модель ре-
комендации показывает достаточно высокие результаты в сравнении с от-
дельными моделями. При этом вся гибридная архитектура не является
ресурсоёмкой. Все эксперименты проводятся на реальных данных историй
взаимодейтвий пользователей в одном онлайн-кинотеатре.

[1] Robin Burke. Hybrid Web Recommender Systems, pages 377–408.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.
[2] Koren, Yehuda; Bell, Robert; Volinsky, Chris (August 2009). “Matrix
Factorization Techniques for Recommender Systems”. Computer. 42 (8): 30–37.
[3] T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition. Springer,
2016. 745 p.
[4] S. Rendle. Factorization machines. In Data Mining (ICDM), 2010
IEEE 10th International Conference on, pages 995–1000. IEEE, 2010.
[5] Maciej Kula. Metadata Embeddings for User and Item Cold-start
Recommendations. arXiv preprint arXiv:1507.08439, 2015.
[6] J. Weston, S. Bengio, and N. Usunier. WSABIE: Scaling up to large
vocabulary image annotation. In IJCAI, volume 11, pages 2764–2770, 2011
[7] J.H. Friedman. Greedy function approximation: A gradient boosting
machine. Technical Report, IMS Reitz Lecture, Stanford, 1999; see also Annals
of Statistics, 2001.
[8] K. Guolin, M. Qi, et al. LightGBM: A highly efficient gradient boosting
decision tree. In NIPS, pages 3149–3157, 2017.
[9] Q. Wu, C.J.C. Burges, K. Svore and J. Gao. Adapting Boosting for
Information Retrieval Measures. Journal of Information Retrieval, 2007.
[10] C.J.C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N.
Hamilton and G. Hullender. Learning to Rank using Gradient Descent. Proceedings
of the Twenty Second International Conference on Machine Learning, 2005.
[11] Tie-Yan Liu (2009), Learning to Rank for Information Retrieval,
Foundations and Trends in Information Retrieval: Vol. 3: No 3, с. 225-331
[12] C. J. Burges. From ranknet to lambdarank to lambdamart: An overview.
Learning, 11, pp. 23-581, 2010.
[13] Breitinger, Corinna; Gipp, Bela; Langer, Stefan (2015-07-26). Research-
paper recommender systems: a literature survey. International Journal on Digital
Libraries. 17 (4): 305–338.
[14] Акулич И. Л. Математическое программирование в примерах и
задачах. — М.: Высшая школа, 1986. — С. 298-310.
[15] https://boosters.pro/championship/rekko_challenge/
[16] https://github.com/xaphoon/rekko_challenge

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Андрей С. Тверской государственный университет 2011, математический...
    4.7 (82 отзыва)
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на... Читать все
    Учился на мат.факе ТвГУ. Любовь к математике там привили на столько, что я, похоже, никогда не перестану этим заниматься! Сейчас работаю в IT и пытаюсь найти время на продолжение диссертационной работы... Всегда готов помочь! ;)
    #Кандидатские #Магистерские
    164 Выполненных работы
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет