Применение методов искусственного интеллекта для разработки алгоритма онлайн трекинга множества объектов в режиме реального времени

Чурсина, Елена Андреевна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Интеллектуальные системы видеонаблюдения в настоящее время пользуются всё большей популярностью, благодаря способности автоматизировать задачи, которые обычно выполнимы только человеком. К таким задачам относится задача трекинга объектов в видеопотоке.
В работе описывается разработка алгоритма онлайн трекинга множества объектов в режиме реального времени с применением методов искусственного интелекта. Для отслеживания объектов в видеопотоке был разработан нейросетевой алгоритм онлайн трекинга множества объектов на основе подхода трекинга с помощью детекций, получаемых нейросетевым детектором, с применением методов глубокого обучения. Результаты тестирования работы алгоритма показали высокие значения метрик точности и производительности.

ВВЕДЕНИЕ …………………………………………………………………………………………………. 14

1 Аналитический обзор предметной области ………………………………………………… 16

1.1 Задача трекинга множества объектов …………………………………………………… 16

1.2 Существующие методы трекинга множества объектов…………………………. 17

1.3 Методы оценки качества работы алгоритма трекинга множества объектов
…………………………………………………………………………………………………………………. 21

2 Разработка алгоритма онлайн трекинга множества объектов в режиме
реального времени ………………………………………………………………………………………. 24

2.1 Разработка архитектуры алгоритма трекинга множества объектов ……….. 24

2.2 Разработка методов детектирования для алгоритма трекинга множества
объектов …………………………………………………………………………………………………… 27

2.3 Разработка методов предсказания движения для алгоритма трекинга
множества объектов ………………………………………………………………………………….. 29

2.4 Разработка методов извлечения графических признаков для алгоритма
трекинга множества объектов……………………………………………………………………. 36

2.5 Разработка методов вычисления метрик схожести для алгоритма трекинга
множества объектов ………………………………………………………………………………….. 37

2.6 Разработка методов ассоциации …………………………………………………………… 41

2.7 Конфигурация разработанного алгоритма трекинга множества объектов 41

2.8 Разработка методов оценки трафика на основе результатов алгоритма
трекинга множества объектов……………………………………………………………………. 42

3 Разработка программных средств для онлайн трекинга множества объектов в
режиме реального времени ………………………………………………………………………….. 46

3.1 Программные инструменты ……………………………………………………………… 46

3.2 Программная архитектура……………………………………………………………………. 46

4 Исследования алгоритма онлайн трекинга множества объектов в режиме
реального времени с использованием разработанных программных средств … 50

4.1 Условия проведения исследований ………………………………………………………. 50

4.2 Выбор метода детектирования для разработанного алгоритма трекинга
множества ………………………………………………………………………………………………… 50

4.3 Выбор методов искусственного интеллекта, применяющихся на разных
этапах, алгоритма трекинга множества объектов……………………………………….. 52

5 Финансовый менеджмент, ресурсоэффективность и ресурсосбережение……. 58

5.1 Предпроектный анализ ………………………………………………………………………… 58

5.1.1 Потенциальные потребители результатов исследования …………………. 58

5.1.2 Анализ конкурентных решений ……………………………………………………… 60

5.1.3 SWOT-анализ ………………………………………………………………………………… 62

5.1.4 Цели и результаты проекта …………………………………………………………….. 66

5.2 Планирование научно-исследовательских работ ………………………………….. 66

5.2.1 Структура работ в рамках научного исследования ………………………….. 66

5.2.2 План проекта …………………………………………………………………………………. 67

5.2.3 Бюджет научного исследования ……………………………………………………… 70

5.3 Вывод………………………………………………………………………………………………….. 78

6 Социальная ответственность …………………………………………………………………….. 80

6.1 Правовые и организационные вопросы обеспечения безопасности ………. 80

6.2 Производственная безопасность ……………………………………………………….. 81

6.2.1 Отклонение показателей микроклимата………………………………………….. 81

6.2.2 Превышение уровня шума ……………………………………………………………… 82

6.2.3 Недостаточная освещенность рабочей зоны ……………………………………. 83

6.2.4 Нарушение предельно допустимых значений напряжений
прикосновения и токов …………………………………………………………………………… 86
6.3 Обоснование мероприятий по снижению воздействия вредных
производственных факторов ……………………………………………………………………… 87

6.4 Экологическая безопасность………………………………………………………………… 87

6.5 Безопасность в чрезвычайных ситуациях …………………………………………….. 88

6.6 Выводы по разделу …………………………………………………………………………… 89

6.7 Законодательные акты ……………………………………………………………………… 90

ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………… 92

СПИСОК ИСТОЧНИКОВ ……………………………………………………………………………. 94

ПРИЛОЖЕНИЕ A ……………………………………………………………………………………….. 99

ПРИЛОЖЕНИЕ Б ………………………………………………………………………………………. 117

ПРИЛОЖЕНИЕ В ……………………………………………………………………………………… 118

ПРИЛОЖЕНИЕ Г ………………………………………………………………………………………. 119

ПРИЛОЖЕНИЕ Д ……………………………………………………………………………………… 120

Сегодня всѐ чаще для автоматизирования решения задач, обычно
выполнимых только человеком, применяются методы искусственного
интеллекта, основанные на использовании алгоритмов компьютерного зрения и
принципов глубокого обучения. Задача трекинга объектов на кадрах
видеопоследовательности (видеофайла или видеопотока) относится к таким
задачам. Решения задачи трекинга объектов находят применение в различных
прикладных областях: охране, робототехнике, подсчѐте пешеходного и
автомобильного трафика, разработке интеллектуальных систем
видеонаблюдения, создании интерфейсов человек-компьютер и многих других.
[1]
Современные разработки в области трекинга объектов успешно
применяют методы искусственного интеллекта для достижения высоких метрик
качества работы. Тем не менее, далеко не все решения, показывающие хорошие
результаты трекинга, способны работать онлайн и в режиме реального времени,
что затрудняет их применение для практических задач. [2]
Целью данной работы является разработка алгоритма онлайн трекинга
множества объектов в режиме реального времени на кадрах
видеопоследовательности с применением методов искусственного интеллекта.
Разработанный алгоритм должен быть внедрѐн в ядро платформы для оценки
трафика на видеозаписях и видеопотоках, снятых с помощью камер
статического видеонаблюдения, для параллельной обработки от двух потоков.
Для достижения поставленной цели необходимо выполнить следующие
задачи:
 провести анализ существующих методов решения задачи трекинга;
 разработать собственный алгоритм онлайн трекинга множества
объектов в режиме реального времени на основе применения методов
искусственного интеллекта;
 разработать программные средства для онлайн трекинга множества
объектов в режиме реального времени;
 провести исследования и настройку алгоритма онлайн трекинга
множества объектов с помощью разработанных программных средств;
 выполнить внедрение и тестирование разработанного алгоритма
онлайн трекинга множества объектов в состав ядра платформы для оценки
трафика на кадрах статического видеонаблюдения.
Практическая значимость данной работы состоит в разработке решения
для автоматизации подсчѐта пешеходного и автомобильного трафика для задач
оценки пассажиропотока и выбора локаций для открытия новых торговых точек
на основе сравнительного анализа.
1 Аналитический обзор предметной области
1.1 Задача трекинга множества объектов
Задача трекинга объекта определяется как задача автоматического
распознавания и дальнейшего отслеживания объекта на последовательности
кадров видеопотока [3]. С помощью алгоритма трекинга определяется
траектория объекта во времени путѐм определения положения объекта на
каждом кадре видеопоследовательности. Положение объекта на кадре может
быть представлено в виде точки или набора точек, простой геометрической
фигуры; силуэта или контура и других форм [4]. Представление положения
объекта в виде ограничивающего окна (bounding box) подходит для объектов
любых размеров и форм и является одной из наиболее часто используемых
форм представления объекта на кадре в существующих решениях и наборах
данных для обучения и валидации алгоритмов трекинга.
Различают трекинг одного (Visual Object Tracking) и множества объектов
(Multiple Object Tracking). Задача трекинга множества объектов заключается в
одновременном детектировании и трекинге множества объектов на
последовательности кадров видеопотока [3]. Работа алгоритма трекинга
множества объектов на примере алгоритма SORT в виде двух
последовательных кадров видеопотока, на которых локализованы объекты с
указанными идентификаторами, представлена на рисунке 1. [5]

В ходе выполнения работы были получены следующие результаты:
 изучены существующие методы, применяющиеся при решении
задачи трекинга;
 разработана собственная архитектура алгоритма онлайн трекинга
множества объектов на кадрах видеопоследовательностей на основе подхода
трекинга с помощью детекций; особенностью разработанного алгоритма
является возможность гибкой настройки применяемых на разных этапах работы
методов искусственного интеллекта;
 разработаны программные средства для онлайн трекинга множества
объектов в режиме реального времени на основе межпроцессорной
архитектуры;
 в результате проведения экспериментов была выбрана
конфигурация методов искусственного интеллекта для применения на разных
этапах онлайн алгоритма трекинга в режиме реального времени (MOTA 0,3808,
обработка до 40 кадров в секунду, степень загруженности CPU – 200%, расход
GPU – 1507 МБ), включающая такие методы, как нейросетевой метод
детектирования YOLOv4 для локализации и классификации объектов,
использование фильтра Калмана и вектора скорости для предсказания
движения, использование IOU в качества метрики схожести и алгоритма поиска
потока минимальной стоимости для ассоциации детекций и отслеживаемых
объектов;
 исследования применения методов искусственного интеллекта на
разных этапах работы алгоритма трекинга множества объектов показали, что в
дальнейшей разработке следует уделять внимание способности методов
работать в разных условиях с зашумлѐнными данными, а также оптимизации
использования методов в составе алгоритма трекинга;
 разработанный алгоритм онлайн трекинга множества объектов в
режиме реального времени был внедрѐн в состав ядра платформы для оценки
трафика на видеозаписях и видеопотоках, снятых с помощью камер
статического видеонаблюдения, Visius, где демонстрирует погрешность
подсчѐта количества объектов, пересекающих линии, от 0 до 23,21 % по
сравнению с человеком, решающим аналогичную задачу, и способность
обрабатывать одновременно четыре видеопотока со скоростью от 5 до 12
кадров в секунду (свидетельства о государственной регистрации программы
для ЭВМ и акт внедрения программы представлены в приложениях Г и Д
соответственно);
 результаты по теме работы были представлены на Международной
научно-практической конференции студентов, аспирантов, молодых учѐных
«МСИТ-2021». Доклад был отмечен дипломом.
Таким образом, цель работы была достигнута.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы

    Другие учебные работы по предмету