Распознавание образов на изображениях с использованием инструментов машинного обучения

Вторушина, Анна Сергеевна Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Представлен программный комплекс, осуществляющий распознавание изображений и
рукописных символов с использованием машинного обучения и построенного по
архитектуре искусственных нейронных сетей. Проведен выбор оптимальных средств
синтеза и моделирования нейронной сети. Экспериментально определена оптимальная
архитектура нейросети для задачи распознавания рукописных числовых символов.
Представлены результаты сравнения точности и времени выполнения кода
нейросетевого алгоритма с использованием систем облачной обработки данных.

Введение…………………………………………………………………………………………… 17
1 Объект и методы исследования …………………………………………………… 20
2 Модель нейронной сети ………………………………………………………………. 21
2.1 Обзор литературы …………………………………………………………………. 21

2.2 Математическая концепция нейронной сети ………………………….. 23

2.3 Свойства нейронных сетей ……………………………………………………. 24

2.3.1 Выпрямленная линейная функция активации (rectified linear
unit, ReLU) 24

2.3.2 Функция активации Softmax …………………………………………….. 25

2.3.3 Метод градиентного спуска ……………………………………………… 26

2.3.4 Алгоритм обратного распространения ошибки ………………… 27

2.4 Описание сверточной нейронной сети …………………………………… 31

2.4.1 Сверточный слой …………………………………………………………….. 32

2.4.2 Шаг свертки …………………………………………………………………….. 34

2.4.3 Выбор максимального значения из соседних ……………………. 35

2.4.4 Подвыборочный слой ………………………………………………………. 36

2.4.5 Визуализация промежуточных активаций ………………………… 36

2.4.6 Полносвязанный слой ……………………………………………………… 37

2.4.7 DropOut слой …………………………………………………………………… 38

3 Выбор программных средств ………………………………………………………. 41
3.1 Выбор языка программирования ……………………………………………. 41

3.1.1 Python ……………………………………………………………………………… 41

3.1.2 Описание используемых библиотек и фреймворков …………. 42

3.2 Выбор среды программирования …………………………………………… 43
3.2.1 Pycharm …………………………………………………………………………… 44

3.3 Выбор облачных сервисов для оптимизации процесса …………… 46

3.3.1 Google Colaboratory………………………………………………………….. 46

3.3.2 Microsoft Aruze ………………………………………………………………… 46

3.3.3 AWS ………………………………………………………………………………… 47

4 Поведенческое моделирование нейронной сети …………………………… 48
4.1 Генераторы …………………………………………………………………………… 48

4.2 Расширение данных ………………………………………………………………. 50

4.3 Предварительно обученная нейронная сеть……………………………. 52

4.4 Архитектура программного обеспечения……………………………….. 53

4.5 Результаты эксперимента ………………………………………………………. 55

5 Оптимизация аппаратных ресурсов …………………………………………….. 62
5.1 Google Colaboratory ……………………………………………………………….. 62

5.2 Azure Machine Learning …………………………………………………………. 63

5.3 AWS ……………………………………………………………………………………… 64

6 Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение………………………………………………………………………………………. 66
6.1 Организация и планирование работ ……………………………………….. 66

6.1.1 Продолжительность этапов работ …………………………………….. 67

6.2 Расчет сметы затрат на выполнение проекта ………………………….. 70

6.2.1 Расчет затрат на материалы ……………………………………………… 70

6.2.2 Расчет заработной платы …………………………………………………. 71

6.2.3 Расчет затрат на социальный налог ………………………………….. 72

6.2.4 Расчет затрат на электроэнергию ……………………………………… 73

6.2.5 Расчет амортизационных расходов…………………………………… 74
6.2.6 Расчет прочих расходов …………………………………………………… 75

6.2.7 Расчет общей себестоимости разработки………………………….. 75

Расчет прибыли, НДС и цены разработки НИР ………………… 76

6.3 Оценка экономической эффективности проекта …………………….. 76

6.4 Оценка научно-технического уровня НИР …………………………….. 78

6.5 Выводы по разделу ……………………………………………………………….. 80

7 Социальная ответственность……………………………………………………….. 81
7.1 Введение ………………………………………………………………………………. 81

7.2 Правовые и организационные вопросы обеспечения
безопасности ……………………………………………………………………………………………. 81

7.2.1 Требования к организации рабочих мест пользователей …… 83

7.3 Производственная безопасность ……………………………………………. 84

7.3.1 Анализ опасных и вредных производственных факторов
Опасные и вредные производственные факторы, обладающие свойствами
психофизиологического воздействия ……………………………………………………. 86

7.3.1.1 Опасные и вредные производственные факторы,
связанные с аномальными микроклиматическими параметрами ………… 87

7.3.1.2 Опасные и вредные производственные факторы,
связанные с повышенным уровнем характеристик шумового воздействия
7.3.1.3 Опасные и вредные производственные факторы,
связанные с электрическим током……………………………………………………… 90

7.3.1.4 Опасные и вредные производственные факторы,
связанные с электромагнитными полями …………………………………………… 91

7.3.1.5 Опасные и вредные производственные факторы,
связанные со световой средой …………………………………………………………… 92
7.4 Экологическая безопасность …………………………………………………. 96

7.5 Безопасность в чрезвычайных ситуациях ………………………………. 97

7.6 Выводы по разделу ……………………………………………………………….. 98

Заключение ………………………………………………………………………………………. 99
Список публикаций…………………………………………………………………………. 100
Список используемой литературы …………………………………………………… 101
Приложение А ………………………………………………………………………………… 105
Приложение Б …………………………………………………………………………………. 121

Данная работа посвящена разработке методов и алгоритмов, входящих в
программный комплекс, осуществляющий распознавание изображений и
рукописных символов с использованием машинного обучения и построенного
по архитектуре искусственных нейронных сетей. В работе поднимаются
вопросы сложности обучения сети, ее возможного переобучения, а также
предлагаются варианты решения проблемы низкой производительности путем
оптимизации архитектуры сети и аппаратных ресурсов с применением
облачных сервисов обработки данных. В процессе исследования проведен
сравнительный анализ результатов обучения нейронной сети с применением
открытой библиотеки машинного обучения TensorFlow, библиотек Keras и
NumPy, а также набором данных из базы MNIST.
Актуальность данной темы исследования подтверждается массовым
внедрением компьютерных технологий и систем искусственного интеллекта
практически во все сферы человеческой деятельности такие как: системы видео
и аудио фиксации, поиск и обработка нецифровой информации, контроль
качества и другие, где требуется полная автоматизация процесса, повышение
качества, скорости выполнения задач. Фундаментальными исследованиями в
области нейронных сетей и распознавания образов занимался С. Хайкин. В его
трудах приводятся математическое обоснование нейросетевых алгоритмов,
примеров и описание компьютерных экспериментов по распознаванию образов,
управлению и обработке сигналов. Над задачами по визуальному анализу
данных работают научный национальный институт стандартов и технологий
(NIST), подразделение «Microsoft Research» и многие другие, которые
используют большое количество различных методов и практик для создания
новых нейросетевых алгоритмов, построенных в том числе и на сверточных
нейнонных сетях, так как они лучше подходят для задач визуального анализа
данных. Результаты таких исследований широко внедряются в современные
технологии оптико-электронных приборов и комплексов, ориентированных на
формирование и обработку цифровых изображений.
Одна из центральных проблем, которая должна быть разрешена с
помощью настоящего исследования — это проблема определения методов и
алгоритмов обработки информации на основе которых могли бы производиться
создание и направленная оптимизация инструментов решения поставленной
задачи. Таким образом, исходя из актуальности темы, задача настоящего
исследования направлена на разработку программного обеспечения для
распознавания рукописных цифр с использованием методов машинного
обучения.
Целью исследования является разработка автоматического метода
распознавания рукописных чисел, построенного на основе нейросетевого
алгоритма, а также синтез архитектуры нейронной сети и ее оптимизация, с
точки зрения ускорения и повышения точности распознавания цифровых
рукописных символов.
Предметом исследования в данной работе выступает оптимизация,
ускорение и повышение точности машинных систем распознавания образов.
Объектом исследования является созданная нейронная сеть, по
классификации относящаяся к типу сверточных нейросетей.
Научная новизна исследования заключается в создании оригинальной
архитектуры нейронной сети, построенной по принципу многослойности, и
относящаяся к типу сверточных, являющаяся вариацией многослойного
персептрона, где каждый слой содержит определенное количество рецептивных
полей.
Практическая значимости результатов исследования подтверждается
множеством публикаций по данной теме, а также повсеместным
использованием в повседневной жизни. Результаты работы могут быть
использованы в областях визуального анализа данных бумажной документации
какого-либо предприятия, где необходим перевод данных с бумажного
носителя в электронный вид.
Апробация работы проведена путем публикации научной работы
«Распознавание образов с использованием инструментов машинного обучения»
в журнале «Молодежь и современные информационные технологии».

В результате проделанной работы было проведено исследование
принципа работы сверточной нейронной сети и ее прикладное применения для
распознавания образов, в частности – рукописных цифр при помощи
современных методов машинного обучения. Разработано консольное
приложение на языке программирования Python для работы с данными из
открытой базы MNIST.
Архитектура сети для нейронной сети будет следующая:
– Чередующиеся слои свертки и подвыборки;
– Полносвязные слои для классификации;
– Техника с борьбы с переобучением(Dropout).
Разработанное приложение впоследствии может послужить отправной
точкой для разработки ядра более мощной программы распознавания
рукописного ввода, а именно связки цифр, символов (номера автомобилей,
почтовые индексы и т.д.).
Список публикаций

1. А.С. Вторушина, И.А. Ботыгин Распознавание рукописных цифр на
изображениях с использованием инструментов машинного обучения /
Молодежь и современные информационные технологии: сборник трудов XVII
Международной научно-практической конференции студентов, аспирантов и
молодых ученых (Томск, 17–20 февраля 2020 г.) / Томский политехнический
университет. – Томск: Изд-во Томского политехнического университета, 2020.
– 458 с.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа

    Другие учебные работы по предмету