Распознавание опухолей на МРТ-изображениях головного мозга

Беккерман Анна Александровна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В настоящей работе методами машинного обучения проводится распознавание опухолей головного мозга на МРТ-снимках. Сравниваются несколько моделей, классифицирующих снимки по наличию на них опухолей. Разрабатываются несколько новых моделей на основе выбранной. Результаты работы нейронных сетей оцениваются при помощи F-меры и выбирается наиболее успешная модель.

Введение ……………………………………………………………………………………………………. 3
Постановка задачи……………………………………………………………………………………… 5
Обзор литературы………………………………………………………………………………………. 6
Искусственные нейронные сети …………………………………………………………………. 8
Нейронные сети в медицине ………………………………………………………………….. 11
Проблемы и ограничения ………………………………………………………………………. 12
Применение сверточных нейронных сетей ……………………………………………….. 14
Оценка точности …………………………………………………………………………………… 15
Набор данных ……………………………………………………………………………………….. 16
VGG16 ………………………………………………………………………………………………….. 17
ResNet …………………………………………………………………………………………………… 20
Преобразование VGG16 …………………………………………………………………………… 26
Выводы ……………………………………………………………………………………………………. 32
Заключение ……………………………………………………………………………………………… 33
Список литературы ………………………………………………………………………………….. 34

С самого появления компьютеров люди стараются переложить на них решение как можно большего количества задач. В медицинской диагностике одной из самых главных и сложных задач является правильная постановка диагноза. От неё зависит всё дальнейшее лечение. Конечно, эту задачу также пытаются автоматизировать для минимизации влияния человеческого фактора. Ведь он может быть как положительным (например, большой опыт врача, полученный за долгие годы практики), так и отрицательным (например, плохое самочувствие).
Хотя на данный момент создано немало медицинских систем принятия решения, при их разработке возникают некоторые методологические трудности. Ведь сложно схематизировать данные, когда несколько специалистов может по-разному определять одну и ту же болезнь, что нередко происходит. При помощи четкого алгоритма не всегда можно описать некоторые сложные клинические картины. Самой большой же проблемой является то, что при создании системы нужных знаний может и не быть вовсе. В связи с чем производятся попытки разработки системы, знающей больше ее разработчиков.
В идеале разработанный метод должен обладать стопроцентной чувствительностью (вероятность того, что все люди с положительным результатом будут отнесены к нужному классу) и, одновременно, – стопроцентной специфичностью (вероятность того, что все люди с отрицательным результатом будут определены правильно).
Очень часто высокая чувствительность влечет за собой низкую специфичность. Это может происходить из-за того, что не для каждого человека выход определенного параметра за принятую норму будет считаться заболеванием. Здесь играют роль индивидуальные особенности организма.
3
Увеличить для метода чувствительность так, чтобы при этом не страдала специфичность, помогают нейронные сети. Это нелинейные системы, которые способные классифицировать данные намного лучше часто применяемых линейных методов. Нейронные сети учатся делать выводы, анализируя обнаруженные ими скрытые связи в данных. При этом они не используют какой-то определенный алгоритм вывода для принятия решения, а учатся этому на примерах. Также нейронные сети могут проводить классификацию, подытоживая предыдущий опыт и используя его в последующих задачах. [1]

Подводя итог, можно сказать, что все поставленные задачи были
выполнены. Была проведена классификация снимков по наличию на них
опухолей на основе работы четырех разработанных моделей нейронной сети и
выбрана наилучшая, показавшая значение F-меры равное 0.91.

В дальнейшем применение нейронных сетей показывает свою
целесообразность в использовании для программного обеспечения, которое
будет быстро и точно обрабатывать огромные массивы данных, и машин,
способных видеть и делать то, с чем не справляется человек. Проводимые
исследования с применением нейронной сети говорят о перспективности
данного направления и еще многих ее неизученных возможностях.

1. ЧурюмоваИ.Г.Медицинскаясистемапринятиярешенийс
использованием нейронной сети // Вестник Нац. техн. ун-та “ХПИ” : сб.
науч. тр. Темат. вып. : Информатика и моделирование. – Харьков : НТУ
“ХПИ”. – 2004. – № 34. – С. 199-202.
2. Samuel Burns. Python Deep learning // Kindle Edition, 2019, С. 178
3. Ramaswamy Reddy A., Prasad E. V., Reddy L. S. S. Comparative analysis of
brain tumor detection using different segmentation techniques //International
Journal of Computer Applications. – 2013. – Т. 82. – №. 14. – С. 0975-8887.
4. Das S., Siddiqui N. N., Kriti N., & Tamang, S. P. Detection and area
calculation of brain tumour from MRI images using MATLAB //International
Journal. – 2017. – Т. 4. – №. 1. – С. 35
5. Othman M. F. B., Abdullah N. B., Kamal N. F. B. MRI brain classification
using support vector machine //2011 Fourth International Conference on
Modeling, Simulation and Applied Optimization. – IEEE, 2011. – С. 1-4.
6. Kumar D. D., Vandhana S., Priya, K. S., & Subashini S. J. Brain tumour image
segmentation using MATLAB //vol. – 2015. – Т. 1. – С. 447-451.
7. Zhang Y., Dong Z., Wu L., & Wang S. A hybrid method for MRI brain image
classification //Expert Systems with Applications. – 2011. – Т. 38. – №. 8. –
С. 10049-10053.
8. Othman M. F., Basri M. A. M. Probabilistic neural network for brain tumor
classification //2011 Second International Conference on Intelligent Systems,
Modelling and Simulation. – IEEE, 2011. – С. 136-138.
9. 6 Types of Activation Function in Neural Networks You Need to Know
[Электронный ресурс], // URL: https://www.upgrad.com/blog/types-of-
activation-function-in-neural-networks/ (дата обращения: 13.02.2020)
10. Neural Network | Machine Learning Tutorial [Электронный ресурс], //
URL:https://sci2lab.github.io/ml_tutorial/neural_network/#Common-
Activation-Functions (дата обращения: 13.01.2020)
11. What Is a Neural Network? [Электронный ресурс], 1994-2021 // The
MathWorks,Inc,URL:https://www.mathworks.com/discovery/neural-
network.html (дата обращения: 05.03.2020)
12. Neurohive. Рутинные задачи с минимальным риском [Электронный
ресурс], // URL: https://neurohive.io/ru/novosti/nejronnye-seti-v-medicine/
(20.05.2020)

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет