Распознавание опухолей на МРТ-изображениях головного мозга

Беккерман Анна Александровна
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В настоящей работе методами машинного обучения проводится распознавание опухолей головного мозга на МРТ-снимках. Сравниваются несколько моделей, классифицирующих снимки по наличию на них опухолей. Разрабатываются несколько новых моделей на основе выбранной. Результаты работы нейронных сетей оцениваются при помощи F-меры и выбирается наиболее успешная модель.

Введение ……………………………………………………………………………………………………. 3
Постановка задачи……………………………………………………………………………………… 5
Обзор литературы………………………………………………………………………………………. 6
Искусственные нейронные сети …………………………………………………………………. 8
Нейронные сети в медицине ………………………………………………………………….. 11
Проблемы и ограничения ………………………………………………………………………. 12
Применение сверточных нейронных сетей ……………………………………………….. 14
Оценка точности …………………………………………………………………………………… 15
Набор данных ……………………………………………………………………………………….. 16
VGG16 ………………………………………………………………………………………………….. 17
ResNet …………………………………………………………………………………………………… 20
Преобразование VGG16 …………………………………………………………………………… 26
Выводы ……………………………………………………………………………………………………. 32
Заключение ……………………………………………………………………………………………… 33
Список литературы ………………………………………………………………………………….. 34

С самого появления компьютеров люди стараются переложить на них решение как можно большего количества задач. В медицинской диагностике одной из самых главных и сложных задач является правильная постановка диагноза. От неё зависит всё дальнейшее лечение. Конечно, эту задачу также пытаются автоматизировать для минимизации влияния человеческого фактора. Ведь он может быть как положительным (например, большой опыт врача, полученный за долгие годы практики), так и отрицательным (например, плохое самочувствие).
Хотя на данный момент создано немало медицинских систем принятия решения, при их разработке возникают некоторые методологические трудности. Ведь сложно схематизировать данные, когда несколько специалистов может по-разному определять одну и ту же болезнь, что нередко происходит. При помощи четкого алгоритма не всегда можно описать некоторые сложные клинические картины. Самой большой же проблемой является то, что при создании системы нужных знаний может и не быть вовсе. В связи с чем производятся попытки разработки системы, знающей больше ее разработчиков.
В идеале разработанный метод должен обладать стопроцентной чувствительностью (вероятность того, что все люди с положительным результатом будут отнесены к нужному классу) и, одновременно, – стопроцентной специфичностью (вероятность того, что все люди с отрицательным результатом будут определены правильно).
Очень часто высокая чувствительность влечет за собой низкую специфичность. Это может происходить из-за того, что не для каждого человека выход определенного параметра за принятую норму будет считаться заболеванием. Здесь играют роль индивидуальные особенности организма.
3
Увеличить для метода чувствительность так, чтобы при этом не страдала специфичность, помогают нейронные сети. Это нелинейные системы, которые способные классифицировать данные намного лучше часто применяемых линейных методов. Нейронные сети учатся делать выводы, анализируя обнаруженные ими скрытые связи в данных. При этом они не используют какой-то определенный алгоритм вывода для принятия решения, а учатся этому на примерах. Также нейронные сети могут проводить классификацию, подытоживая предыдущий опыт и используя его в последующих задачах. [1]

Подводя итог, можно сказать, что все поставленные задачи были
выполнены. Была проведена классификация снимков по наличию на них
опухолей на основе работы четырех разработанных моделей нейронной сети и
выбрана наилучшая, показавшая значение F-меры равное 0.91.

В дальнейшем применение нейронных сетей показывает свою
целесообразность в использовании для программного обеспечения, которое
будет быстро и точно обрабатывать огромные массивы данных, и машин,
способных видеть и делать то, с чем не справляется человек. Проводимые
исследования с применением нейронной сети говорят о перспективности
данного направления и еще многих ее неизученных возможностях.

1. ЧурюмоваИ.Г.Медицинскаясистемапринятиярешенийс
использованием нейронной сети // Вестник Нац. техн. ун-та “ХПИ” : сб.
науч. тр. Темат. вып. : Информатика и моделирование. – Харьков : НТУ
“ХПИ”. – 2004. – № 34. – С. 199-202.
2. Samuel Burns. Python Deep learning // Kindle Edition, 2019, С. 178
3. Ramaswamy Reddy A., Prasad E. V., Reddy L. S. S. Comparative analysis of
brain tumor detection using different segmentation techniques //International
Journal of Computer Applications. – 2013. – Т. 82. – №. 14. – С. 0975-8887.
4. Das S., Siddiqui N. N., Kriti N., & Tamang, S. P. Detection and area
calculation of brain tumour from MRI images using MATLAB //International
Journal. – 2017. – Т. 4. – №. 1. – С. 35
5. Othman M. F. B., Abdullah N. B., Kamal N. F. B. MRI brain classification
using support vector machine //2011 Fourth International Conference on
Modeling, Simulation and Applied Optimization. – IEEE, 2011. – С. 1-4.
6. Kumar D. D., Vandhana S., Priya, K. S., & Subashini S. J. Brain tumour image
segmentation using MATLAB //vol. – 2015. – Т. 1. – С. 447-451.
7. Zhang Y., Dong Z., Wu L., & Wang S. A hybrid method for MRI brain image
classification //Expert Systems with Applications. – 2011. – Т. 38. – №. 8. –
С. 10049-10053.
8. Othman M. F., Basri M. A. M. Probabilistic neural network for brain tumor
classification //2011 Second International Conference on Intelligent Systems,
Modelling and Simulation. – IEEE, 2011. – С. 136-138.
9. 6 Types of Activation Function in Neural Networks You Need to Know
[Электронный ресурс], // URL: https://www.upgrad.com/blog/types-of-
activation-function-in-neural-networks/ (дата обращения: 13.02.2020)
10. Neural Network | Machine Learning Tutorial [Электронный ресурс], //
URL:https://sci2lab.github.io/ml_tutorial/neural_network/#Common-
Activation-Functions (дата обращения: 13.01.2020)
11. What Is a Neural Network? [Электронный ресурс], 1994-2021 // The
MathWorks,Inc,URL:https://www.mathworks.com/discovery/neural-
network.html (дата обращения: 05.03.2020)
12. Neurohive. Рутинные задачи с минимальным риском [Электронный
ресурс], // URL: https://neurohive.io/ru/novosti/nejronnye-seti-v-medicine/
(20.05.2020)

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Екатерина С. кандидат наук, доцент
    4.6 (522 отзыва)
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    Практически всегда онлайн, доработки делаю бесплатно. Дипломные работы и Магистерские диссертации сопровождаю до защиты.
    #Кандидатские #Магистерские
    1077 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет