Разработка алгоритмов машинного обучения для автоматического описания рентгеновских изображений

Скворцов, Александр Вадимович Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Цель работы: реализация нескольких алгоритмов машинного обучения для автоматического анализа рентгеновских изображений, сравнение результатов их работы между собой и с аналогами.
В результате проведённых экспериментов было проведено сравнение двух типов архитектур, 4 архитектур, одного ансамбля нейронных сетей. Был оценен эффект трёх различных способов предобработки изображений на результаты классификации и выделяемые на изображениях признаки. Было произведено сравнение обученных нейронных сетей между собой и с аналогами. Был произведён анализ наиболее распространённого набора данных рентгеновских снимков грудной клетки, сформулированы его недостатки. Были сформулированы рекомендации к дальнейшему улучшению работы аналогичных систем.

ВВЕДЕНИЕ …………………………………………………………………………………………………… 6
ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР …………………………………………………………. 7
1.1 Медицинские аспекты. ………………………………………………………………………….. 7
1.1.1 Актуальность классической рентгенографии ……………………………………. 7
1.1.2 Использование искусственного интеллекта в автоматическом анализе
рентгенологических изображений, текущее состояние. …………………………….. 9
1.2. Описание основных алгоритмов …………………………………………………………. 10
1.2.2 Мультиклассификация …………………………………………………………………… 10
1.2.3 Классификация по нескольким меткам. ………………………………………….. 11
1.2.4 Полносвязные и сверточные нейронные сети. ………………………………… 11
1.2.5 Трансферное обучение. ………………………………………………………………….. 14
1.2.6 Карты активации классов ……………………………………………………………….. 15
1.2.7 Преобразование Фурье …………………………………………………………………… 16
1.3 Существующие алгоритмы автоматического анализа рентгенологических
изображений. ……………………………………………………………………………………………. 18
2. МАТЕРИАЛЫ И МЕТОДЫ ……………………………………………………………………… 23
2.1 Использованные технологии ……………………………………………………………….. 23
2.1.1 Keras ……………………………………………………………………………………………… 23
2.1.2 OpenCV …………………………………………………………………………………………. 24
2.1.3 TensorFlow …………………………………………………………………………………….. 24
2.1.4 NumPy …………………………………………………………………………………………… 24
2.2 Используемые архитектуры нейронных сетей. …………………………………….. 25
2.3 Используемые наборы данных. ……………………………………………………………. 27
2.3.1 NIH Chest X-Ray Dataset…………………………………………………………………. 27
ГЛАВА 3 РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ. ……………………………………………. 29
3.1 Параметры обучения……………………………………………………………………………. 29
3.2 Обучение со случайной инициализацией весов. …………………………………… 29
3.3 Трансферное обучение с весами, без модификации весов ImageNet ……… 32
3.3.1 Описание экспериментов ……………………………………………………………….. 32
3.3.2 Анализ метрик точности троичных классификаторов по классам. …… 36
3.3.3 Анализ карт активаций классов троичных классификаторов …………… 39
3.3.4 Ансамбль троичных классификаторов. …………………………………………… 44
3.4 Трансферное обучение с изменением весов ImageNet …………………………… 45
3.4.1 Описание экспериментов c VGG19…………………………………………………. 45
3.4.2 Анализ метрик точности мультиклассификаторов VGG19 по классам.
………………………………………………………………………………………………………………. 49
3.4. 3 Анализ карт активаций классов мультиклассификаторов VGG19 …… 55
3.3.4 Описание экспериментов с мультиклассификаторами ResNet50 …….. 58
3.3.5 Анализ метрик точности по классам мультиклассификаторов на основе
ResNet50 ………………………………………………………………………………………………… 58
3.3.6 Анализ карт активаций классов класификаторов на основе ResNet50 60
Обсуждение результатов. ………………………………………………………………………….. 61
ГЛАВА 4. Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение………………………………………………………………………………………. 63
4.1 Предпроектный анализ ………………………………………………………………………… 63
4.1.1 Потенциальные потребители результатов исследования …………………. 63
4.1.2 Анализ конкурентных решений ……………………………………………………… 64
4.1.3 SWOT-анализ ………………………………………………………………………………… 64
4.1.4 Оценка готовности проекта к коммерциализации …………………………… 66
4.1.5 Цели и результаты проекта …………………………………………………………….. 68
4.2 Планирование управления научно-техническим проектом …………………… 69
4.7.1 План проекта …………………………………………………………………………………. 69
4.2.2 Бюджет научного исследования ……………………………………………………… 70
4.2.3 Специальное оборудование для научных работ ………………………………. 71
4.2.4 Основная заработная плата …………………………………………………………….. 72
4.2.5 Дополнительная заработная плата научно-производственного
персонала ………………………………………………………………………………………………. 74
4.2.6 Отчисления на социальные нужды …………………………………………………. 75
4.2.7 Накладные расходы ……………………………………………………………………….. 76
4.2.8 Формирование бюджета затрат научно-исследовательского проекта . 77
4.3 Оценка научного уровня ……………………………………………………………………… 78
Выводы по разделу. ………………………………………………………………………………….. 81
ГЛАВА 5. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………………………………. 82
5.1 Правовые аспекты обеспечения безопасности ……………………………………… 83
5.2 Эргономические требования к рабочему месту …………………………………….. 83
5.3 Производственная безопасность ………………………………………………………….. 84
5.3.1 Вредные производственные факторы ……………………………………………… 85
5.3.2 Опасные производственные факторы ……………………………………………… 91
5.4 Экологическая безопасность………………………………………………………………… 92
5.5 Безопасность в чрезвычайных ситуациях …………………………………………….. 93
Выводы по разделу …………………………………………………………………………………… 95
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………… 95
ПРИЛОЖЕНИЕ A ……………………………………………………………………………………… 101

Актуальность работы. В настоящее время развитие технологий искуственного
интеллекта и машинного обучения, а также накопление больших объемов
медицинских изображений открывают возможность создания систем
автоматического анализа медицинских изображений.
Рентген грудной клетки – это одно из самых простых и распространенных
обследований, применяющихся на данный момент. Его автоматизация
значительно снизит нагрузку на рентгенологов, позволит оценивать качество их
работы и снизит вероятность врачебных ошибок.
Цель работы. целью данной работы является реализация нескольких
алгоритмов машинного обучения для автоматического анализа рентгеновских
изображений, сравнение результатов их работы между собой и с аналогами.
Задачами исследование является:
6. Анализ подходов к решению задачи автоматического описания
рентгенологических изображений;
7. Поиск и анализ датасетов;
8. Реализация и тестирование выбранных архитектур нейронных сетей;
9. Реализация и тестирование выбранных способов предобработки
изображений;
10. Сравнение результатов работы всех реализованных алгоритмов между
собой и с аналогами;
Предмет исследования. Предмет исследования – нейронные сети, используемые
для классификации изображений.

Как было показано в нашей работе, на данный момент существует
вероятность значительных систематических ошибок, при обучении нейронных
сетей классификации рентгенологических изображений. В первую очередь это
связано с используемыми для обучения наборами данных, содержащих
систематические искажения. Перед использованием такого искуственного
интеллекта в клинической практике эта проблема должна быть решена. Мы
видим два пути решения проблемы.
Первый состоит в полностью ручной маркировке, специально подобранных
рентгенологических изображений, исключающих не описанное наличие
сторонних объектов и сложных противоречивых примеров, подготовленным к
такой задаче врачём-рентгенологом. Необходимо дополнительно отмечать
положение пациента. Желательно вручную выделить области патологии, для
обучения таких архитектур, как U-net. В обязательном порядке должен
проводится контроль нейронных сетей с помощью карт активации классов, даже
при высоких показателях точности. Должен производится подбор аритектуры и
способа предобработки изображения максимизирующий результаты как
первого, так и второго способа оценки нейронных сетей. Этот путь требует
значительных временных и финансовых затрат. Вторым путём является
использование обучения без учителя, для предворительной кластеризации
рентгенологических изображений, с последующим обучением их с учителем.
Этот способ может снизить финансовые и временные затраты.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Мария А. кандидат наук
    4.7 (18 отзывов)
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет... Читать все
    Мне нравится изучать все новое, постоянно развиваюсь. Могу написать и диссертацию и кандидатскую. Есть опыт в различных сфера деятельности (туризм, экономика, бухучет, реклама, журналистика, педагогика, право)
    #Кандидатские #Магистерские
    39 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Ольга Р. доктор, профессор
    4.2 (13 отзывов)
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласован... Читать все
    Преподаватель ВУЗа, опыт выполнения студенческих работ на заказ (от рефератов до диссертаций): 20 лет. Образование высшее . Все заказы выполняются в заранее согласованные сроки и при необходимости дорабатываются по рекомендациям научного руководителя (преподавателя). Буду рада плодотворному и взаимовыгодному сотрудничеству!!! К каждой работе подхожу индивидуально! Всегда готова по любому вопросу договориться с заказчиком! Все работы проверяю на антиплагиат.ру по умолчанию, если в заказе не стоит иное и если это заранее не обговорено!!!
    #Кандидатские #Магистерские
    21 Выполненная работа
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ

    Другие учебные работы по предмету