Разработка алгоритмов машинного обучения для автоматического описания рентгеновских изображений

Скворцов, Александр Вадимович Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Цель работы: реализация нескольких алгоритмов машинного обучения для автоматического анализа рентгеновских изображений, сравнение результатов их работы между собой и с аналогами.
В результате проведённых экспериментов было проведено сравнение двух типов архитектур, 4 архитектур, одного ансамбля нейронных сетей. Был оценен эффект трёх различных способов предобработки изображений на результаты классификации и выделяемые на изображениях признаки. Было произведено сравнение обученных нейронных сетей между собой и с аналогами. Был произведён анализ наиболее распространённого набора данных рентгеновских снимков грудной клетки, сформулированы его недостатки. Были сформулированы рекомендации к дальнейшему улучшению работы аналогичных систем.

ВВЕДЕНИЕ …………………………………………………………………………………………………… 6
ГЛАВА 1. АНАЛИТИЧЕСКИЙ ОБЗОР …………………………………………………………. 7
1.1 Медицинские аспекты. ………………………………………………………………………….. 7
1.1.1 Актуальность классической рентгенографии ……………………………………. 7
1.1.2 Использование искусственного интеллекта в автоматическом анализе
рентгенологических изображений, текущее состояние. …………………………….. 9
1.2. Описание основных алгоритмов …………………………………………………………. 10
1.2.2 Мультиклассификация …………………………………………………………………… 10
1.2.3 Классификация по нескольким меткам. ………………………………………….. 11
1.2.4 Полносвязные и сверточные нейронные сети. ………………………………… 11
1.2.5 Трансферное обучение. ………………………………………………………………….. 14
1.2.6 Карты активации классов ……………………………………………………………….. 15
1.2.7 Преобразование Фурье …………………………………………………………………… 16
1.3 Существующие алгоритмы автоматического анализа рентгенологических
изображений. ……………………………………………………………………………………………. 18
2. МАТЕРИАЛЫ И МЕТОДЫ ……………………………………………………………………… 23
2.1 Использованные технологии ……………………………………………………………….. 23
2.1.1 Keras ……………………………………………………………………………………………… 23
2.1.2 OpenCV …………………………………………………………………………………………. 24
2.1.3 TensorFlow …………………………………………………………………………………….. 24
2.1.4 NumPy …………………………………………………………………………………………… 24
2.2 Используемые архитектуры нейронных сетей. …………………………………….. 25
2.3 Используемые наборы данных. ……………………………………………………………. 27
2.3.1 NIH Chest X-Ray Dataset…………………………………………………………………. 27
ГЛАВА 3 РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ. ……………………………………………. 29
3.1 Параметры обучения……………………………………………………………………………. 29
3.2 Обучение со случайной инициализацией весов. …………………………………… 29
3.3 Трансферное обучение с весами, без модификации весов ImageNet ……… 32
3.3.1 Описание экспериментов ……………………………………………………………….. 32
3.3.2 Анализ метрик точности троичных классификаторов по классам. …… 36
3.3.3 Анализ карт активаций классов троичных классификаторов …………… 39
3.3.4 Ансамбль троичных классификаторов. …………………………………………… 44
3.4 Трансферное обучение с изменением весов ImageNet …………………………… 45
3.4.1 Описание экспериментов c VGG19…………………………………………………. 45
3.4.2 Анализ метрик точности мультиклассификаторов VGG19 по классам.
………………………………………………………………………………………………………………. 49
3.4. 3 Анализ карт активаций классов мультиклассификаторов VGG19 …… 55
3.3.4 Описание экспериментов с мультиклассификаторами ResNet50 …….. 58
3.3.5 Анализ метрик точности по классам мультиклассификаторов на основе
ResNet50 ………………………………………………………………………………………………… 58
3.3.6 Анализ карт активаций классов класификаторов на основе ResNet50 60
Обсуждение результатов. ………………………………………………………………………….. 61
ГЛАВА 4. Финансовый менеджмент, ресурсоэффективность и
ресурсосбережение………………………………………………………………………………………. 63
4.1 Предпроектный анализ ………………………………………………………………………… 63
4.1.1 Потенциальные потребители результатов исследования …………………. 63
4.1.2 Анализ конкурентных решений ……………………………………………………… 64
4.1.3 SWOT-анализ ………………………………………………………………………………… 64
4.1.4 Оценка готовности проекта к коммерциализации …………………………… 66
4.1.5 Цели и результаты проекта …………………………………………………………….. 68
4.2 Планирование управления научно-техническим проектом …………………… 69
4.7.1 План проекта …………………………………………………………………………………. 69
4.2.2 Бюджет научного исследования ……………………………………………………… 70
4.2.3 Специальное оборудование для научных работ ………………………………. 71
4.2.4 Основная заработная плата …………………………………………………………….. 72
4.2.5 Дополнительная заработная плата научно-производственного
персонала ………………………………………………………………………………………………. 74
4.2.6 Отчисления на социальные нужды …………………………………………………. 75
4.2.7 Накладные расходы ……………………………………………………………………….. 76
4.2.8 Формирование бюджета затрат научно-исследовательского проекта . 77
4.3 Оценка научного уровня ……………………………………………………………………… 78
Выводы по разделу. ………………………………………………………………………………….. 81
ГЛАВА 5. СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ ………………………………………. 82
5.1 Правовые аспекты обеспечения безопасности ……………………………………… 83
5.2 Эргономические требования к рабочему месту …………………………………….. 83
5.3 Производственная безопасность ………………………………………………………….. 84
5.3.1 Вредные производственные факторы ……………………………………………… 85
5.3.2 Опасные производственные факторы ……………………………………………… 91
5.4 Экологическая безопасность………………………………………………………………… 92
5.5 Безопасность в чрезвычайных ситуациях …………………………………………….. 93
Выводы по разделу …………………………………………………………………………………… 95
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………………… 95
ПРИЛОЖЕНИЕ A ……………………………………………………………………………………… 101

Актуальность работы. В настоящее время развитие технологий искуственного
интеллекта и машинного обучения, а также накопление больших объемов
медицинских изображений открывают возможность создания систем
автоматического анализа медицинских изображений.
Рентген грудной клетки – это одно из самых простых и распространенных
обследований, применяющихся на данный момент. Его автоматизация
значительно снизит нагрузку на рентгенологов, позволит оценивать качество их
работы и снизит вероятность врачебных ошибок.
Цель работы. целью данной работы является реализация нескольких
алгоритмов машинного обучения для автоматического анализа рентгеновских
изображений, сравнение результатов их работы между собой и с аналогами.
Задачами исследование является:
6. Анализ подходов к решению задачи автоматического описания
рентгенологических изображений;
7. Поиск и анализ датасетов;
8. Реализация и тестирование выбранных архитектур нейронных сетей;
9. Реализация и тестирование выбранных способов предобработки
изображений;
10. Сравнение результатов работы всех реализованных алгоритмов между
собой и с аналогами;
Предмет исследования. Предмет исследования – нейронные сети, используемые
для классификации изображений.

Как было показано в нашей работе, на данный момент существует
вероятность значительных систематических ошибок, при обучении нейронных
сетей классификации рентгенологических изображений. В первую очередь это
связано с используемыми для обучения наборами данных, содержащих
систематические искажения. Перед использованием такого искуственного
интеллекта в клинической практике эта проблема должна быть решена. Мы
видим два пути решения проблемы.
Первый состоит в полностью ручной маркировке, специально подобранных
рентгенологических изображений, исключающих не описанное наличие
сторонних объектов и сложных противоречивых примеров, подготовленным к
такой задаче врачём-рентгенологом. Необходимо дополнительно отмечать
положение пациента. Желательно вручную выделить области патологии, для
обучения таких архитектур, как U-net. В обязательном порядке должен
проводится контроль нейронных сетей с помощью карт активации классов, даже
при высоких показателях точности. Должен производится подбор аритектуры и
способа предобработки изображения максимизирующий результаты как
первого, так и второго способа оценки нейронных сетей. Этот путь требует
значительных временных и финансовых затрат. Вторым путём является
использование обучения без учителя, для предворительной кластеризации
рентгенологических изображений, с последующим обучением их с учителем.
Этот способ может снизить финансовые и временные затраты.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Кирилл Ч. ИНЖЭКОН 2010, экономика и управление на предприятии транс...
    4.9 (343 отзыва)
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). С... Читать все
    Работы пишу, начиная с 2000 года. Огромный опыт и знания в области экономики. Закончил школу с золотой медалью. Два высших образования (техническое и экономическое). Сейчас пишу диссертацию на соискание степени кандидата экономических наук.
    #Кандидатские #Магистерские
    692 Выполненных работы
    Александр Р. ВоГТУ 2003, Экономический, преподаватель, кандидат наук
    4.5 (80 отзывов)
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфин... Читать все
    Специальность "Государственное и муниципальное управление" Кандидатскую диссертацию защитил в 2006 г. Дополнительное образование: Оценка стоимости (бизнеса) и госфинансы (Казначейство). Работаю в финансовой сфере более 10 лет. Банки,риски
    #Кандидатские #Магистерские
    123 Выполненных работы
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Анастасия Б.
    5 (145 отзывов)
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическо... Читать все
    Опыт в написании студенческих работ (дипломные работы, магистерские диссертации, повышение уникальности текста, курсовые работы, научные статьи и т.д.) по экономическому и гуманитарному направлениях свыше 8 лет на различных площадках.
    #Кандидатские #Магистерские
    224 Выполненных работы
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ

    Другие учебные работы по предмету