Разработка и исследование алгоритма выращивания регионов для сегментации медицинских данных

Манаков, Роман Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Алгоритм выращивания регионов, в основе которого заложена идея Region Growing, отличающаяся от существующих применением многоразмерных суперпикселей и построением сплайн-контура.

Введение ……………………………………………………………………………………………………… 11
1. Обзор литературы ………………………………………………………………………………….. 14
2. Содержательная и концептуальная постановки задачи ……………………………. 18
3. Математическая модель алгоритма ………………………………………………………… 20

3.1 Предобработка изображений ……………………………………………………………….. 20
3.2 Модель сегментации ……………………………………………………………………………. 21
3.3 Размещение первого суперпикселя ………………………………………………………. 22
3.4 Поиск внешних суперпикселей ……………………………………………………………. 24
3.5 Построение сплайн-контура ………………………………………………………………… 24
3.6 Детектирование границ ……………………………………………………………………….. 28
3.7 Методы принятия коллективных решений …………………………………………… 29

4. Программная реализация ……………………………………………………………………….. 31

4.1 Выбор среды разработки ……………………………………………………………………… 31
4.2 Интерфейс и особенности программной реализации ……………………………. 32

5. Тестирование …………………………………………………………………………………………. 35

5.1 Метрики оценки точности……………………………………………………………………. 35
5.2 Материалы ……………………………………………………………………………………….. 36

6. Результаты……………………………………………………………………………………………….. 38

6.1 Точность алгоритма …………………………………………………………………………….. 38
6.2 Скорость выполнения алгоритма …………………………………………………………. 42

7. Обсуждение результатов ………………………………………………………………………….. 45
8. Финансовый менеджмент, ресурсоэффективность и ресурсосбережение … 49

8.1 Предпроектный анализ ………………………………………………………………………… 49
8.2 SWOT-анализ………………………………………………………………………………………. 52
8.3 Планирование управлением научно-технических проектом …………………. 57
8.4 Бюджет научно-технического исследования ………………………………………… 63
8.5 Реестр рисков ………………………………………………………………………………………. 70
8.6 Общий вывод по разделу……………………………………………………………………… 74

9. Социальная ответственность ………………………………………………………………….. 76

9.1 Повышенный уровень шума на рабочем месте …………………………………….. 78
9.2 Отклонение показателей микроклимата ……………………………………………….. 79
9.3 Недостаточная освещённость рабочей зоны …………………………………………. 81
9.4 Экологическая безопасность………………………………………………………………… 88
9.5 Безопасность в чрезвычайных ситуациях …………………………………………….. 89
9.6 Статические физические перегрузки ……………………………………………………. 91

Заключение …………………………………………………………………………………………………. 96
Список использованных источников ……………………………………………………………. 97
Приложение A …………………………………………………………………………………………… 101
Приложение Б ……………………………………………………………………………………………. 112

Современная цифровая медицина является востребованным направлением,
которое в будущем позволит вывести здравоохранение на принципиально новый
уровень развития. Однако, в тоже время внедрение качественных
информационных систем в медицинскую практику нетривиально и требует
решения множества сложнейших задач по обработке медицинской информации.
Одной из таких задач является обработка различного рода графической
информации: результаты исследования МРТ (магнитно-резонансной
томографии), снимки КТ (компьютерной томография), а также ультразвуковые
данные эхокардиографии.
Очевидно, что анализ графической информации начинается с выделения
на изображении интересующей области и определения её границ. Этот процесс
называется сегментацией. Сегментация необходима для локализации
интересующих объектов на изображениях. В контексте медицины это могут быть
различные анатомические структуры, ткани, элементы опорно-двигательной
системы, а также хирургические инструменты, находящиеся внутри тела
человека при проведении малоинвазивных операций. По результату сегментации
можно определить размеры и площадь сегментированных участков, выявить
отклонение от нормы и поставить правильный диагноз.
Таким образом, задача сегментации медицинских изображений
представляется достаточно неординарной и требует применения нестандартных
методов для её решения. В отличие от других областей, где данные чисты и
хорошо структурированы, медицинские данные очень разнородны,
неоднозначны, неполны и сильно зашумлены. Это является главной проблемой,
которая в зачастую приводит к нестабильной работе обычных методов
сегментации. Уже разработаны методы, которые позволяют частично решить
описанные выше проблемы. Работа таких методу сводится к статистическому
анализу суперпикселей. Под суперпикселями понимается группа пикселей,
объединённых по какому-либо признаку. Однако, недостатком таких подходов
является высокая сложность алгоритма, что приводит к большому времени
выполнения. В данной работе предлагается новый подход, основанный на
суперпиксельной обработке, который позволяет увеличить надёжность
алгоритма и повысить его скорость, путём снижения асимптотической
сложности алгоритма.
Целью данной работы, является разработка, реализация и исследование
алгоритма сегментации медицинских данных, в основе которого лежит принцип
выращивания регионов для повышения надёжности и скорости разработанного
метода. Для достижения цели необходимо решить следующий перечень задач:

В ходе выполнения выпускной квалификационной работы был разработан
метод выращивания регионов для сегментации медицинских данных. Сделана
реализация метода и проведено его тестирование. Исследовано поведение
алгоритма и влияние основных параметров: размеры начального и
минимального суперпикселя на скорость и точность сегментации. Исследовано
влияние этих размеров на стабильность работы алгоритма. Произведено
сравнение разработанного алгоритма с классическим алгоритмом выращивания
регионов.
Для этого был проведён анализ литературы, разработана концепция
выращивания региона суперпикселями, выбрана среда для разработки и написан
исходный код алгоритма. Далее проведена отладка и тестирование.
Тестирование разработанного алгоритма показало среднюю точность
94±2% и 93.5±6.7% на двух выборках изображений. Реализация алгоритма
позволила достичь большей устойчивости и стабильности, чем у алгоритма
“Region Growing”. По скорости сегментации классический алгоритм также
значительно уступает.
Достигнутые показатели не являются предельными для данной разработки.
Разработанный алгоритм, в связи с предложенной архитектурой, может быть
модифицирован за счёт:
 применения большего количества методов для детектирования
границ;
 использования новых методов коллективного принятия решений;
 реализация алгоритма с применением параллельных вычислений;
 масштабирование алгоритма для сегментации трёхмерных данных.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Ольга Б. кандидат наук, доцент
    4.8 (373 отзыва)
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских... Читать все
    Работаю на сайте четвертый год. Действующий преподаватель вуза. Основные направления: микробиология, биология и медицина. Написано несколько кандидатских, магистерских диссертаций, дипломных и курсовых работ. Слежу за новинками в медицине.
    #Кандидатские #Магистерские
    566 Выполненных работ
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Анна Н. Государственный университет управления 2021, Экономика и ...
    0 (13 отзывов)
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уни... Читать все
    Закончила ГУУ с отличием "Бухгалтерский учет, анализ и аудит". Выполнить разные работы: от рефератов до диссертаций. Также пишу доклады, делаю презентации, повышаю уникальности с нуля. Все работы оформляю в соответствии с ГОСТ.
    #Кандидатские #Магистерские
    0 Выполненных работ
    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Ксения М. Курганский Государственный Университет 2009, Юридический...
    4.8 (105 отзывов)
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитыв... Читать все
    Работаю только по книгам, учебникам, статьям и диссертациям. Никогда не использую технические способы поднятия оригинальности. Только авторские работы. Стараюсь учитывать все требования и пожелания.
    #Кандидатские #Магистерские
    213 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет