Решения дифференциальных уравнений методом коллокации в программной среде MATLAB

Шаймарданова, Айжан Алтайханкызы Отделение экспериментальной физики (ОЭФ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Данная работа посвящена решению обыкновенных дифференциальных уравнений второго порядка методом коллокации. Разработан алгоритм решения обыкновенных дифференциальных уравнений методом коллокации в программной среде MATLAB. Проведено тестирование разработанного алгоритма.

Введение …………………………………………………………………………………………… 12
1. Объект и метод исследования………………………………………………………….. 14
1.1 Обыкновенные дифференциальные уравнения ………………………….. 14
1.2 Теоретические основы численных методов ………………………………. 17
1.3 Базисные функции ………………………………………………………………….. 21
1.4 Метод коллокаций ………………………………………………………………….. 22
2 ПРАКТИЧЕСКАЯ ЧАСТЬ ……………………………………………………………. 28
2.1 Метод полиномиальной коллокации ………………………………………… 28
2.2 Метод коллокации Фурье ………………………………………………………… 38
2.3 Анализ устойчивости метода …………………………………………………… 49
3 СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ …………………………………………. 54
3.1 ПРАВОВЫ И ОРГАНИЗАЦИОННЫЕ ВОПРОСЫ ОБЕСПЕЧЕНИЯ
БЕЗОПАСНОСТИ …………………………………………………………………………… 54
3.1.1 Правовые нормы трудового законодательства для рабочей зоны 54
3.1.2 ПРОИЗВОДСТВЕННАЯ БЕЗОПАСНОСТЬ ………………………….. 55
3.2 АНАЛИЗ ВРЕДНЫХ И ОПАСНЫХ ФАКТОРОВ, КОТОРЫЕ
МОЖЕТ СОЗДАТЬ ОБЪЕКТ ИССЛЕДОВАНИЯ. …………………………….. 56
3.2.1 Отклонение показателей микроклимата ………………………………… 56
3.2.2 Повышенный уровень шума …………………………………………………. 58
3.2.3 Недостаточная освещенность рабочей зоны …………………………… 59
3.2.4 Повышенное значение напряжения в электрической цепи,
замыкание которой может произойти через тело человека ………………. 61
3.2.4 Повышенный уровень электромагнитных излучений ……………… 64
3.3 ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ ……………………………………. 65
3.4 БЕЗОПАСНОСТЬ ПРИ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЯХ ……….. 66
4 ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБРЕЖЕНИЕ …………………………………………………………………….. 70
4.1 Предпроектный анализ ……………………………………………………………. 70
4.1.1 Потенциальные потребители результатов исследования …………. 70
4.1.2 Анализ конкурентных технических решений с позиции
ресурсоэффективности и ресурсосбережения …………………………………. 71
4.1.3 SWOT-анализ ……………………………………………………………………….. 72
4.1.4 Оценка готовности проекта к коммерциализации …………………… 74
4.1.5 Методы коммерциализации результатов научно-технического
исследования ……………………………………………………………………………….. 76
4.2 Инициализация проекта …………………………………………………………… 76
4.2.1 Цели и результат проекта ……………………………………………………… 77
4.2.2 Организационная структура проекта……………………………………… 78
4.2.3 Ограничения и допущения проекта ……………………………………….. 79
4.3 Планирование процесса управления НТИ: структура и график
проведения, бюджет, риски и организация закупок …………………………… 79
4.3.1 Разработка календарного плана проекта ………………………………… 79
4.3.2 Бюджет научного исследования ……………………………………………. 81
4.3.3 специальное оборудование для научных (специальных) работ … 81
4.4 Реестр рисков проекта …………………………………………………………….. 87
4.5 Определение ресурсной (ресурсосберегающей), финансовой,
бюджетной, социальной и экономической эффективности исследования88
4.5.1 Оценка абсолютной эффективности исследования …………………. 88
Оценка сравнительной эффективности исследования ……………………… 94
ЗАКЛЮЧЕНИЕ …………………………………………………………………………………. 98
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ……………………………….. 99
Приложение A Разработанный алгоритм……………………………………………. 103
Приложение Б Раздел ВКР, выполненный на иностранном языке ……….. 107

Развитие вычислительной техники позволило численным методам
стать одними из самых эффективных средств для решения сложных
краевых задач для обыкновенных дифференциальных уравнений.
Применение вычислительной техники позволяет автоматизировать
процесс нахождения решения либо же упростить наиболее трудоемкие
процедуры вычисления, а также уменьшить количество итераций, которые
необходимы для поиска точного или приближенного решения .
Численные методы решения различных видов уравнений представляют
собой алгоритмы нахождения приближенных (в некоторых случаях –
точных) значений искомого решения. Стоит отметить, что численные
методы возможно использовать только в случае корректно поставленной
задачи. Для того, чтобы решить дифференциальное уравнение численными
методами, нужны два известных параметра: начальное условие и заданный
интервал. В случае наличия данных факторов решение
дифференциального уравнения представляет собой несложную задачу. В
то же время аналитическое решение краевых задач является источником
больших затруднений, что закономерно стало причиной развития
множества приближенных методов решения задач. По типу представления
результатов приближенного решения методы подразделяются на две
группы:
 приближенно-аналитические, которые дают приближенное решение
краевой задачи на отрезке [a, b] как некоторую конкретную функцию;
 собственно численные и сеточные методы, которые дают каркас
приближенного решения на заданной [a, b] сетке.
В данной выпускной квалификационной работе мы будем
рассматривать метод коллокаций. Суть данного метода заключается в том,
что процесс поиска приближенного решения проводится в конечномерном
линейном пространстве функций, при этом неизвестные коэффициенты его
разложения по базису пространства находят из уравнений коллокаций и
краевых условий. В данном случае уравнения коллокаций являются
требованиями удовлетворения приближенного решения
дифференциальным уравнениям задачи в конечном множестве точек
области постановки задачи, которые называются узлами коллокаций.
Получение краевых условий осуществляется из соответствующих условий
исходной постановки задачи, которые записаны в нескольких точках на
границе области. В данном методе количество уравнений равно
количеству неизвестных.
В последнее время развитие информационных технологий привело к
тому, что решение дифференциальных уравнения вручную стало
длительным и нерациональным ввиду наличия возможности написания
отдельного алгоритма, который найдет решение поставленной задачи,
затратив минимум времени. Также не исключается возможность
самостоятельного ввода необходимых данных, а также изменения
дифференциального уравнения в целых решения уже другой поставленной
задачи.
В качестве программной среды реализации выбран пакет MATLAB.
MATLAB является средой и языком технических расчетов, который
предназначен для решения широкого спектра инженерных и научных задач
любой сложности во всех отраслях.
1. ОБЪЕКТ И МЕТОД ИССЛЕДОВАНИЯ

В результате выпускной квалификационной работы был разработан
алгоритм, для решения обыкновенных дифференциальных уравнений.
Данный алгоритм позволяет пользователю самостоятельно ввести
необходимые параметры, а также изменить дифференциальное уравнение
для выполнения уже другой поставленной задачи.
Проведены численные эксперименты разработанного алгоритма на
различных типах уравнений второго порядка. Была посчитана погрешность
и построен график зависимости погрешности от количества точек
коллокаций. Точность численного решения зависит от правильного выбора
базисных функций. Количество узлов коллокации влияет на погрешность.
При увеличении точек коллокаций погрешность стремиться к нулю. Также
проведен анализ устойчивости метода и приведен иллюстративный
рисунок области абсолютной устойчивости метода.
В выпускной квалификационной работе также разработаны меры по
охране труда работников и по защите окружающей среды.
В экономическом разделе рассчитаны основные технико-
экономические показатели проекта, определена себестоимость получаемой
целевой продукции и прибыль от ее реализации.

1. Иванов В.И. Дифференциальные уравнения: методические указания /
В.И. Иванов. – М.: 2013. – 13c.
2. ЛебедевА.Г.Лекциипочисленнымметодам:Обыкновенные
дифференциальные уравнения: Учебное пособие для студентов / А.Г.
Лебедев. – Изд. 3-е. – М.: Рубцовский индустриальный институт, 2016.
– 37-38с.
3. Киреев В.А. Метод коллокации с бикубическим эрмитовым базисом в
области с криволинейной границей / Киреев Виталий Александрович. –
М.: Вестник СибГАУ, 2014. №3(55). – 73с.
4. Вержбицкий В.М. Основы численных методов: Учебник для вузов /
В.М. Вержбицкий. – 2-е изд. – М.: Высшая школа, 2005. – 631-637c.
5. Демидович Б.П. Численные методы анализа. Приближение функций,
дифференциальные и интегральные уравнения: Учебное пособие / Б.П.
Демидович, И.А. Марон, Э.З. Шувалова. – 5-е изд. – М.: Изд-во Лань,
2010. – 255-257с.
6. Venkateshan S.P. Prasanna Swaminathan, in Computational Methods in
Engineering / S.P. Venkateshan. – М.: ScienceDirect, 2014.
https://www.sciencedirect.com/topics/engineering/collocation-point

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Мария Б. преподаватель, кандидат наук
    5 (22 отзыва)
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальнос... Читать все
    Окончила специалитет по направлению "Прикладная информатика в экономике", магистратуру по направлению "Торговое дело". Защитила кандидатскую диссертацию по специальности "Экономика и управление народным хозяйством". Автор научных статей.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет