Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе рассматривается трехуровневая иерархическая игра с конечным числом игроков на каждом уровне. После нахождения в игре ситуации равновесия по Нэшу методом, обобщающим результаты полученные ранее, рассматривается бесконечно повторяющаяся трехуровневая иерархическая игра. Для такой многошаговой игры строятся различные ситуации равновесия по Нэшу, в том числе, с помощью введения стратегий угроз и наказаний. Для кооперативного варианта игры рассчитывается цена анархии и цена устойчивости.

Введение …………………………………………………………………… 3
Постановка задачи …………………………………………………… 5
Обзор литературы……………………………………………………. 7
Глава 1. Иерархическая трехуровневая игра + +
лиц ……………………………………………………………………………. 9
1.1 Описание хода игры ………………………………………………. 11
1.2 Поиск ситуации равновесия по Нэшу ……………………… 16
1.3 Построение другого равновесия по Нэшу ………………. 24
Глава 2. Повторяющаяся иерархическая игра + +
лиц ………………………………………………………………………….. 27
2.1 Бесконечно повторяющаяся игра ………………………….. 27
2.2 Равновесие по Нэшу в бесконечно повторяющейся
игре ……………………………………………………………………………. 30
2.3 Равновесие по Нэшу введением стратегий угроз ….. 30
2.4 Равновесие по Нэшу введением стратегий наказания
…………………………………………………………………………………… 31
Глава 3. Кооперация в бесконечно повторяющейся игре
……………………………………………………………………………….. 37
Заключение ……………………………………………………………… 42
Список цитируемой литературы …………………………….. 44

Иерархические игры являются важнейшим подклассом многошаговых неантагонистических игр [9]. С помощью иерархических игр моделируют конфликтно-управляемые системы, имеющие сложную иерархическую структуру. Иерархическая игра задается последовательностью уровней, каждый из которых имеет определенный приоритет. Иерархические игры принято классифицировать по количеству уровней иерархии и характеру вертикальных связей.
В 1 главе работы рассматривается трехуровневая одношаговая иерархическая игра + + лиц. Эта игра является обобщением простой ромбовидной структуры управления. Для трехуровневой иерархической игры происходит построение двух различных ситуаций равновесия по Нэшу методом, обобщающим результаты, опубликованные ранее. Одна из ситуаций равновесия по Нэшу строится с условием введения стратегий «угроз» со стороны игроков нижнего уровня иерархии.
Во 2 главе работы описывается бесконечно повторяющаяся игра, этапными играми которой
3
являются трехуровневые иерархические игры, рассмотренные в 1 главе работы. Для бесконечно повторяющейся игры построены различные ситуации равновесия по Нэшу, в том числе с условием введения стратегий «угроз» со стороны игроков нижних уровней и стратегий «наказаний» со стороны игроков верхних уровней.
В 3 главе работы описывается кооперативный вариант взаимодействия игроков в бесконечно повторяющейся игре, рассмотренной во 2 главе работы. Для такого варианта игры описывается процесс вычисления цены анархии и цены устойчивости.
4

Постановка задачи
Целью данной работы является анализ иерархических игр сложной ромбовидной структуры, которые являются важным подклассом неантагонистических игр.
Для достижения поставленной цели необходимо:
1. исследовать иерархические игры сложной ромбовидной структуры. В данном виде игры предполагается игроков первого уровня, игроков второго уровня и игроков третьего
уровня иерархии;
2. методом, обобщающим результаты,
опубликованные ранее ([1], [8]), найти ситуацию равновесия в игре сложной ромбовидной структуры ([3]) и построить равновесие другого типа, которое основано на введении стратегий угроз со стороны игроков, находящихся на нижнем уровне иерархии [2], [4], [5];
3. рассмотреть бесконечно повторяющиеся игры, этапными играми которой будут
5

являться трехуровневые иерархические игры,
и исследовать для них подобные вопросы;
4. для бесконечно повторяющейся игры найти другую ситуацию равновесия по Нэшу, основанную на введении стратегий наказаний со стороны игроков, находящихся на верхних
уровнях иерархии;
5. для бесконечно повторяющейся игры
построить наилучшее и наихудшее равновесия по Нэшу, то есть те, ситуации, которые будут давать максимально и минимально возможные выигрыши в рассматриваемой игре;
6. на основе найденных в предыдущем пункте ситуаций равновесия по Нэшу определить цену анархии и цену устойчивости [6], [7].

В ходе выполнения данной исследованы
иерархические игры сложной ромбовидной структуры.
В первую очередь была рассмотрена одношаговая
трехуровневая иерархическая игра, имеющая игроков
на первом уровне, игроков на втором уровне и
игроков на третьем уровне иерархии. В данной игре было
найдено несколько ситуаций равновесия по Нэшу, одно
из которых строится на основе введения стратегий угроз
со стороны игроков, находящихся на нижнем уровне
иерархии.
Далее была исследована бесконечно
повторяющиеся игра, этапными играми которой
являлись трехуровневые иерархические игры,
рассмотренные в главе 1. Для бесконечно
повторяющейся игры получилось построить три
различных ситуации равновесия по Нэшу, одна из
которых была основана на введении стратегий наказаний
со стороны игроков, находящихся на верхних уровнях
иерархии. Другая же ситуация была основана на
стратегиях угроз со стороны игроков, находящихся на
нижнем уровне иерархии.
Также для кооперативного варианта бесконечно
повторяющейся игры построены наилучшее и наихудшее
равновесия по Нэшу и определены:
• цена анархии = ∞;
• цена устойчивости = 1.

1. Петросян Л.А., Зенкевич Н.А., Громова Е.В.
Теория игр. М.: Физматлит, 2012.
2. Aumann R. J., Maschler M., Stearns R. E. Repeated
games with incomplete information. – MIT press,
1995.
3. NashJ.Non-cooperativegames//Annalsof
mathematics. – 1951. – С. 286-295.
4. Fudenberg D., Maskin E. The folk theorem in
repeated games with discounting or with incomplete
information //A Long-Run Collaboration On Long-
Run Games. – 2009. – С. 209-230.
5. Maschler M., Solan E., Zamir S. Game Theory
(Translated from the Hebrew by Ziv Hellman and
edited by Mike Borns) //Cambridge University Press,
Cambridge, pp. xxvi. – 2013. – Т. 979. – С. 4.
6. MazalovV.Mathematicalgametheoryand
applications. – John Wiley & Sons, 2014.
7. Christodoulou G., Koutsoupias E. On the price of
anarchy and stability of correlated equilibria of linear
congestiongames//EuropeanSymposiumon
Algorithms. – Springer, Berlin, Heidelberg, 2005. –
С. 59-70.
8. Petrosyan L., Pankratova Y. Equilibrium and
CooperationinRepeatedHierarchicalGames
//InternationalConferenceonMathematical
Optimization Theory and Operations Research. –
Springer, Cham, 2019. – С. 685-696.
9. Morgenstern O., Von Neumann J. Theory of games
and economic behavior. – Princeton university press,
1953.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Антон П. преподаватель, доцент
    4.8 (1033 отзыва)
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публик... Читать все
    Занимаюсь написанием студенческих работ (дипломные работы, маг. диссертации). Участник международных конференций (экономика/менеджмент/юриспруденция). Постоянно публикуюсь, имею высокий индекс цитирования. Спикер.
    #Кандидатские #Магистерские
    1386 Выполненных работ
    Виктор В. Смоленская государственная медицинская академия 1997, Леч...
    4.7 (46 отзывов)
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выв... Читать все
    Имеют опыт грамотного написания диссертационных работ по медицине, а также отдельных ее частей (литературный обзор, цели и задачи исследования, материалы и методы, выводы).Пишу статьи в РИНЦ, ВАК.Оформление патентов от идеи до регистрации.
    #Кандидатские #Магистерские
    100 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет