Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

В данной работе рассматривается трехуровневая иерархическая игра с конечным числом игроков на каждом уровне. После нахождения в игре ситуации равновесия по Нэшу методом, обобщающим результаты полученные ранее, рассматривается бесконечно повторяющаяся трехуровневая иерархическая игра. Для такой многошаговой игры строятся различные ситуации равновесия по Нэшу, в том числе, с помощью введения стратегий угроз и наказаний. Для кооперативного варианта игры рассчитывается цена анархии и цена устойчивости.

Введение …………………………………………………………………… 3
Постановка задачи …………………………………………………… 5
Обзор литературы……………………………………………………. 7
Глава 1. Иерархическая трехуровневая игра + +
лиц ……………………………………………………………………………. 9
1.1 Описание хода игры ………………………………………………. 11
1.2 Поиск ситуации равновесия по Нэшу ……………………… 16
1.3 Построение другого равновесия по Нэшу ………………. 24
Глава 2. Повторяющаяся иерархическая игра + +
лиц ………………………………………………………………………….. 27
2.1 Бесконечно повторяющаяся игра ………………………….. 27
2.2 Равновесие по Нэшу в бесконечно повторяющейся
игре ……………………………………………………………………………. 30
2.3 Равновесие по Нэшу введением стратегий угроз ….. 30
2.4 Равновесие по Нэшу введением стратегий наказания
…………………………………………………………………………………… 31
Глава 3. Кооперация в бесконечно повторяющейся игре
……………………………………………………………………………….. 37
Заключение ……………………………………………………………… 42
Список цитируемой литературы …………………………….. 44

Иерархические игры являются важнейшим подклассом многошаговых неантагонистических игр [9]. С помощью иерархических игр моделируют конфликтно-управляемые системы, имеющие сложную иерархическую структуру. Иерархическая игра задается последовательностью уровней, каждый из которых имеет определенный приоритет. Иерархические игры принято классифицировать по количеству уровней иерархии и характеру вертикальных связей.
В 1 главе работы рассматривается трехуровневая одношаговая иерархическая игра + + лиц. Эта игра является обобщением простой ромбовидной структуры управления. Для трехуровневой иерархической игры происходит построение двух различных ситуаций равновесия по Нэшу методом, обобщающим результаты, опубликованные ранее. Одна из ситуаций равновесия по Нэшу строится с условием введения стратегий «угроз» со стороны игроков нижнего уровня иерархии.
Во 2 главе работы описывается бесконечно повторяющаяся игра, этапными играми которой
3
являются трехуровневые иерархические игры, рассмотренные в 1 главе работы. Для бесконечно повторяющейся игры построены различные ситуации равновесия по Нэшу, в том числе с условием введения стратегий «угроз» со стороны игроков нижних уровней и стратегий «наказаний» со стороны игроков верхних уровней.
В 3 главе работы описывается кооперативный вариант взаимодействия игроков в бесконечно повторяющейся игре, рассмотренной во 2 главе работы. Для такого варианта игры описывается процесс вычисления цены анархии и цены устойчивости.
4

Постановка задачи
Целью данной работы является анализ иерархических игр сложной ромбовидной структуры, которые являются важным подклассом неантагонистических игр.
Для достижения поставленной цели необходимо:
1. исследовать иерархические игры сложной ромбовидной структуры. В данном виде игры предполагается игроков первого уровня, игроков второго уровня и игроков третьего
уровня иерархии;
2. методом, обобщающим результаты,
опубликованные ранее ([1], [8]), найти ситуацию равновесия в игре сложной ромбовидной структуры ([3]) и построить равновесие другого типа, которое основано на введении стратегий угроз со стороны игроков, находящихся на нижнем уровне иерархии [2], [4], [5];
3. рассмотреть бесконечно повторяющиеся игры, этапными играми которой будут
5

являться трехуровневые иерархические игры,
и исследовать для них подобные вопросы;
4. для бесконечно повторяющейся игры найти другую ситуацию равновесия по Нэшу, основанную на введении стратегий наказаний со стороны игроков, находящихся на верхних
уровнях иерархии;
5. для бесконечно повторяющейся игры
построить наилучшее и наихудшее равновесия по Нэшу, то есть те, ситуации, которые будут давать максимально и минимально возможные выигрыши в рассматриваемой игре;
6. на основе найденных в предыдущем пункте ситуаций равновесия по Нэшу определить цену анархии и цену устойчивости [6], [7].

В ходе выполнения данной исследованы
иерархические игры сложной ромбовидной структуры.
В первую очередь была рассмотрена одношаговая
трехуровневая иерархическая игра, имеющая игроков
на первом уровне, игроков на втором уровне и
игроков на третьем уровне иерархии. В данной игре было
найдено несколько ситуаций равновесия по Нэшу, одно
из которых строится на основе введения стратегий угроз
со стороны игроков, находящихся на нижнем уровне
иерархии.
Далее была исследована бесконечно
повторяющиеся игра, этапными играми которой
являлись трехуровневые иерархические игры,
рассмотренные в главе 1. Для бесконечно
повторяющейся игры получилось построить три
различных ситуации равновесия по Нэшу, одна из
которых была основана на введении стратегий наказаний
со стороны игроков, находящихся на верхних уровнях
иерархии. Другая же ситуация была основана на
стратегиях угроз со стороны игроков, находящихся на
нижнем уровне иерархии.
Также для кооперативного варианта бесконечно
повторяющейся игры построены наилучшее и наихудшее
равновесия по Нэшу и определены:
• цена анархии = ∞;
• цена устойчивости = 1.

1. Петросян Л.А., Зенкевич Н.А., Громова Е.В.
Теория игр. М.: Физматлит, 2012.
2. Aumann R. J., Maschler M., Stearns R. E. Repeated
games with incomplete information. – MIT press,
1995.
3. NashJ.Non-cooperativegames//Annalsof
mathematics. – 1951. – С. 286-295.
4. Fudenberg D., Maskin E. The folk theorem in
repeated games with discounting or with incomplete
information //A Long-Run Collaboration On Long-
Run Games. – 2009. – С. 209-230.
5. Maschler M., Solan E., Zamir S. Game Theory
(Translated from the Hebrew by Ziv Hellman and
edited by Mike Borns) //Cambridge University Press,
Cambridge, pp. xxvi. – 2013. – Т. 979. – С. 4.
6. MazalovV.Mathematicalgametheoryand
applications. – John Wiley & Sons, 2014.
7. Christodoulou G., Koutsoupias E. On the price of
anarchy and stability of correlated equilibria of linear
congestiongames//EuropeanSymposiumon
Algorithms. – Springer, Berlin, Heidelberg, 2005. –
С. 59-70.
8. Petrosyan L., Pankratova Y. Equilibrium and
CooperationinRepeatedHierarchicalGames
//InternationalConferenceonMathematical
Optimization Theory and Operations Research. –
Springer, Cham, 2019. – С. 685-696.
9. Morgenstern O., Von Neumann J. Theory of games
and economic behavior. – Princeton university press,
1953.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Шиленок В. КГМУ 2017, Лечебный , выпускник
    5 (20 отзывов)
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертац... Читать все
    Здравствуйте) Имею сертификат специалиста (врач-лечебник). На данный момент являюсь ординатором(терапия, кардио), одновременно работаю диагностом. Занимаюсь диссертационной работ. Помогу в медицинских науках и прикладных (хим,био,эколог)
    #Кандидатские #Магистерские
    13 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет