Система анализа геологических карт с помощью инструментов компьютерного зрения и машинного обучения

Чугунов, Роман Анварович Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Несколько областей компьютерного зрения было исследовано в данной работе для того, чтобы разработать два модуля системы анализа структурных геологических карт – модуль анализа изображений и модуль исправления результатов анализа. Ряд различных современных методов машинного и глубокого обучения был применен на практике. Все подходы были оценены на синтетической выборке. На тестовой выборке были рассчитаны метрики mAP, IOU, F1 score.

ОГЛАВЛЕНИЕ
ВВЕДЕНИЕ………………………………………………………………………………… 12
МОДУЛЬ АНАЛИЗА ИЗОБРАЖЕНИЙ ГЕОЛОГИЧЕСКИХ КАРТ . 14
Введение в глубокое обучение …………………………………………………. 14
Дизайн решения ………………………………………………………………………. 20
Детекция скважин (символов) ………………………………………………….. 22
Распознавание значений…………………………………………………………… 25
Распознавание изолиний ………………………………………………………….. 28
Описание алгоритма …………………………………………………………….. 28

Исходный подход к извлечению изолиний …………………………….. 28

Извлечение изолиний …………………………………………………………… 29

Векторизация линий …………………………………………………………….. 33

Объединение частей линий …………………………………………………… 34

Кластеризация по цвету и толщине линий. …………………………….. 38

Сегментация изображений для определения областей карт ………… 40
Процесс обучения ………………………………………………………………… 43

Процесс предсказания на новых данных………………………………… 45

МОДУЛЬ ДОРАБОТКИ РЕЗУЛЬТАТОВ АНАЛИЗА ……………………. 47
Интерфейс системы …………………………………………………………………. 47
Разработка модуля доработки результатов анализа ……………………. 49
Интерфейс модуля доработки ……………………………………………….. 49

Обоснование выбора фреймворка …………………………………………. 54

Реализация интерфейса ………………………………………………………… 57

«ФИНАНСОВЫЙ МЕНЕДЖМЕНТ, РЕСУРСОЭФФЕКТИВНОСТЬ И
РЕСУРСОСБЕРЕЖЕНИЕ» ………………………………………………………….. 59
«СОЦИАЛЬНАЯ ОТВЕТСТВЕННОСТЬ» ……………………………………. 78
ЗАКЛЮЧЕНИЕ ………………………………………………………………………….. 89
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ………………………… 91
Приложение II…………………………………………………………………………….. 94

Основным направлением данной работы является исследование
современных методов анализа изображений.
Целью дипломной работы является разработка двух модулей системы
анализа геологических карт. Данная система предназначена для
автоматизации процесса создании трехмерных структурных моделей на
основе геологических карт, а также представлении разнородных
геологический карт в единой системе, доступной пользователям через веб-
интерфейс. Значительное количество картографической информации
нефтегазовых компаний хранится в виде чертежей на бумаге, что несет за
собой ряд проблем:
• Невозможность быстрого поиска карт по различным критериям:
по региону, по дате создания, по схожести между собой, по создателю карты
и т.д.;
• Различия в представлении различных карт;
• Проблемы в отслеживании актуальности карт;
• Сложность сравнения объектов, представленных на двух разных
картах;
Система включает в себя следующие модули:
1. Серверная часть (backend) – взаимодействие с базой данных,
аналитической частью, а также ответы за запросы клиентской части
приложения.
2. Клиентская часть (frontend) – веб-интерфейс пользователя,
который включает функции просмотра и редактирования имеющихся карт,
добавления новых, вызова методов их автоматического анализа на основе
алгоритмов компьютерного зрения, а также экспорта результатов в формате
GeoJSON.
3. Аналитическая часть – модуль, целью которых является
извлечение полезной информации из карт, такой как: наличие и координаты
нефтяных скважин, различные виды изолиний и глубина их залегания.
Серверная и клиентская часть взаимодействуют посредством REST
API. Клиентская часть реализована на JavaScript (Vue.js), серверная часть
реализована на Python (Flask).
Конкретной целью данной дипломной работы является разработка
аналитической части системы, а также одного из модулей клиентской части –
модуля редактирования результатов аналитической части.
Аналитический модуль системы извлекает изолинии на структурных
картах, распознает их глубину, а также детектирует имеющиеся скважины.
Модуль редактирования результатов предназначен для исправления
ошибок в работе аналитического модуля, т.е., является частью
пользовательского интерфейса.
МОДУЛЬ АНАЛИЗА ИЗОБРАЖЕНИЙ ГЕОЛОГИЧЕСКИХ
КАРТ
Введение в глубокое обучение
Глубокое обучение широко используется в различных задачах
компьютерного зрения. С ростом объемов данных, доступных для обучения, а
также с увеличением вычислительных мощностей область компьютерного
зрения все больше переходит от статистических методов к глубоким
нейронных сетям. На рисунке 3 приведен сравнительный график
производительности видеокарт P100, V100 и A100, используемых в
компьютерах Nvidia DGX различных версий (2016 – 2020 гг.), в задаче
обучения контекстуальной языковой модели BERT.

Несколько областей компьютерного зрения было исследовано в данной
работе для того, чтобы разработать два модуля системы анализа структурных
геологических карт – модуль анализа изображений и модуль исправления
результатов анализа.
Несколько современных методов машинного и глубокого обучения
были применены на практике, такие как:
• Бинарная сегментация на основе сверточных нейронных сетей
(две сети с разными задачами)
• Бинарная классификация
• Кластеризация
• Детекция объектов
Различные подходы были исследованы в процессе разработки. Все они
были оценены на синтетической выборке. На синтетической тестовой выборке
были рассчитаны метрики mAP, IOU, F1 score. Однако, наиболее важной
метрикой качества оставалась экспертная оценка из-за недостатка
размеченных данных.
В будущем запланировано несколько модификаций в разработанных
модулей:
1. Нейронная сеть для бинарной сегментации будет заменена на сеть
для сегментации на несколько классов. Это позволит извлекать
изолинии, структурные разломы, границы лицензионных участков и
другую информацию на геологических картах.
2. Генеративно-состязательные сети будут оценены как возможный
источник более разнообразных синтетических данных.
3. Разработанная система будет использована для аннотации реальных
данных с меньшими трудозатратами. Собранные данные позволят
улучшить существующие алгоритмы.
4. Добавление распознавания тектонических нарушений на картах.
Такую функцию можно реализовать с помощью замены бинарной
сегментации изолиний на сегментацию на несколько классов.
Другим важным направлением развития является улучшение UI/UX.
Пользователи системы часто сравнивают ее с несколькими другими
геоинформационными системами. Некоторые из подобных систем были в
разработке многие годы. Следовательно, улучшение клиентской части
приложения необходимо для того, чтобы догнать данные ГИС системы по
удобству и набору функций. Для достижения этой цели необходимо сделать
значительно количество модификаций в текущем модели редактирования
результатов и клиентской части приложения в целом.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Родион М. БГУ, выпускник
    4.6 (71 отзыв)
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    Высшее экономическое образование. Мои клиенты успешно защищают дипломы и диссертации в МГУ, ВШЭ, РАНХиГС, а также других топовых университетах России.
    #Кандидатские #Магистерские
    108 Выполненных работ
    Дарья Б. МГУ 2017, Журналистики, выпускник
    4.9 (35 отзывов)
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных ко... Читать все
    Привет! Меня зовут Даша, я окончила журфак МГУ с красным дипломом, защитила магистерскую диссертацию на филфаке. Работала журналистом, PR-менеджером в международных компаниях, сейчас работаю редактором. Готова помогать вам с учёбой!
    #Кандидатские #Магистерские
    50 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)