Способ сегментации лёгких на снимках КТ с использованием методов глубокого обучения

Войцеховский, Алексей Алексеевич Отделение информационных технологий (ОИТ)
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Цель данной работы – разработка способа сегментации легких на снимках КТ с использованием методов глубокого обучения.для повышении эффективности работы врача-радиолога для описания состояния легких по данным КТ. Разработанное программное обеспечение позволяет сегментировать область легкого на срезе с помощью технологий глубокого обучения.

Реферат …………………………………………………………………………………………. 10
Оглавление ……………………………………………………………………………………. 11
Введение……………………………………………………………………………………….. 14
1 Обзор литературы ………………………………………………………………………. 15
1.1 Глубокое обучени ……………………………………………………………………. 15
1.2 Переобучение нейронных сетей и методы предотвращения
переобучения …………………………………………………………………………………………… 17
1.3 Свёрточные нейронные сети…………………………………………………….. 19
1.3 Архитектуры для семантической сегментации …………………………. 23
1.4 Архитектуры энкодеров …………………………………………………………… 24
1.3.1 Архитектура ResNet ………………………………………………………………. 25
1.3.2 Архитектура MobileNetV2 …………………………………………………….. 26
1.3.3 Архитектура EfficientNet ……………………………………………………….. 27
1.4 Предварительное обучение ………………………………………………………. 28
1.5 Аугментация данных ……………………………………………………………….. 28
2 Объект и методы исследования …………………………………………………… 29
2.1 Описание используемых программных и аппаратных средств ….. 29
2.1 Данные для обучения и тестирования ………………………………………. 30
2.2 Аугментация обучающей выборки …………………………………………… 31
2.3 Обучение моделей……………………………………………………………………. 33
3 Результаты проведенного исследования ……………………………………… 35
4 Финансовый менеджмент, ресурсоэффективность и энергосбережение
………………………………………………………………………………………………………………… 40
4.1 Предпроектный анализ …………………………………………………………….. 40
4.2 Технология QuaD …………………………………………………………………….. 41
4.3 SWOT-анализ…………………………………………………………………………… 42
4.4 Оценка готовности научно-исследовательского проекта к
коммерциализации …………………………………………………………………………………… 47
4.5 Инициация научно-исследовательского проекта ………………………. 49
4.6 Планирование научно-исследовательских работ ………………………. 50
4.6.1 Организационная структура научно-исследовательского проекта50
4.6.2 Структура работ в рамках научного исследования …………………. 51
4.6.3 Определение трудоемкости выполнения работ ………………………. 52
4.6.4 Разработка графика проведения научного исследования ………… 56
4.7 Бюджет научно-технического исследования …………………………….. 58
4.7.1 Расчет материальных затрат ………………………………………………….. 58
4.7.2 Расчет затрат на специальное оборудование для научных работ59
4.7.3 Расчет затрат на амортизацию оборудования …………………………. 59
4.7.4 Основная заработная плата исполнителям работы …………………. 60
4.7.5 Дополнительная заработная плата …………………………………………. 62
4.7.6 Отчисления во внебюджетные фонды ……………………………………. 62
4.7.7 Накладные расходы ………………………………………………………………. 63
4.7.8 Контрагентные расходы ………………………………………………………… 64
4.7.9 Формирование бюджета затрат научно-исследовательского проекта
………………………………………………………………………………………………………………… 64
4.8 Риски научно-исследовательского проекта ………………………………. 65
4.9 Выводы по разделу финансовый менеджмент…………………………… 66
5 Социальная ответственность ………………………………………………………. 67
5.1 Введение …………………………………………………………………………………. 67
5.2 Правовые и организационные вопросы обеспечения безопасности67
5.3 Профессиональная социальная безопасность ……………………………. 69
5.3.1 Отклонение показателей микроклимата …………………………………. 70
5.3.2 Превышение уровня шума …………………………………………………….. 71
5.3.3 Освещение ……………………………………………………………………………. 72
5.3.4 Психофизиологические факторы при работе с компьютером …. 76
5.3.5 Повышенное значение напряжения в электрической цепи,
замыкание которой может произойти через тело человека ………………………… 77
5.4 Экологическая безопасность ……………………………………………………. 78
5.5 Безопасность в чрезвычайных ситуациях …………………………………. 79
5.6 Выводы по разделу ………………………………………………………………….. 81
Заключение …………………………………………………………………………………… 82
Список публикаций и научных достижений …………………………………… 83
Список используемых источников…………………………………………………. 84
Приложение А ………………………………………………………………………………. 88
1.1 Deep learning ……………………………………………………………………………. 89
1.2 Neural networks overfitting and methods for preventing overfitting … 91
1.3 Convolutional neural networks ……………………………………………………. 92
1.4 Semantic segmentation architectures ……………………………………………. 95
1.5 Encoders architectures ……………………………………………………………….. 97
1.5.1 ResNet …………………………………………………………………………………… 97
Figure 4. Residual block in ResNet …………………………………………………… 98
1.5.2 MobileNetV2 …………………………………………………………………………. 98
1.5.3 EfficientNet ……………………………………………………………………………. 99
1.6 Transfer learning ……………………………………………………………………….. 99
1.7 Data augmentation …………………………………………………………………… 100
References ……………………………………………………………………………………. 101
Приложение Б. Исходный код процесса обучения и проверки моделей
………………………………………………………………………………………………………………. 103

Современное компьютерное зрение является динамично развивающейся
областью информационных технологий. Во многом этом связано с широким
распространением методов глубокого обучения, способных решать множество
задач, в том числе связанных с анализом медицинских изображений.
Компьютерное зрение активно развивается в качестве инструмента
автоматизации диагностики заболеваний. В том числе производятся попытки
автоматического поиска патологий лёгких и других органов на снимках
компьютерной томографии и других методов диагностики. Для того чтобы
правильно найти заболевание на этих изображениях, имеет смысл сначала
выделить непосредственно исследуемый орган. Поэтому в данной работе
рассматривается использование методов глубокого обучения для сегментации
лёгких на снимках КТ.
1 Обзор литературы
1.1 Глубокое обучени

В ходе данной работы был рассмотрен датасет со снимками легких КТ и
предложено использование модели глубокого обучения Unet с энкодерами на
основе архитектур ResNet-34, MobileNetV2 и EfficientNet-B0, предобученных на
датасете ImageNet. Для раширения обучающей выборки были использованы
аугментации сдвига, вращения вокруг центра, увеличения, и отражения вокруг
горизонтальной оси. На языке программирования Python с использованием
фреймворка Tensorflow, библиотек scikit-learn и segmentation-models было
реализовано программное обеспечение для подготовки и аугментации данных,
обучения моделей и их проверки на обучающей выборке. После обучения
модели были проверена на тестовой выборке, лучший результат показала
модель на основе архитектуры EfficientNet-B0 – метрика IoU составила 0.9722.
Также данная архитектура является оптимальной по точности и размеру
модели.
Список публикаций и научных достижений
Участие в конференциях:
1. Диплом II степени за лучший доклад на подсекции 3.4 «Вычислительный
интеллект» Международной научно-технической конференции студентов,
аспирантов и молодых ученых «НАУЧНАЯ СЕССИЯ ТУСУР», г. Томск,
25-27 мая 2020 г.
Участие в конкурсах:
1. Диплом I степени на конкурсе по решению бизнес-кейсов в сфере
медицины “МедХакатон”, г. Томск, сентябрь 2018 г.;
2. Диплом за 3 место на II отборочных соревнованиях Digital Skills Томской
области, г. Томск, май 2019 г.ы

Публикации:
1. Zarnitsyn A. Y. et al. Development of the video stream object detection
algorithm (VSODA) with tracking // EAI Endorsed Transactions on Energy
Web. – 2019. – Т. 6. – №. 22.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Глеб С. преподаватель, кандидат наук, доцент
    5 (158 отзывов)
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной с... Читать все
    Стаж педагогической деятельности в вузах Москвы 15 лет, автор свыше 140 публикаций (РИНЦ, ВАК). Большой опыт в подготовке дипломных проектов и диссертаций по научной специальности 12.00.14 административное право, административный процесс.
    #Кандидатские #Магистерские
    216 Выполненных работ
    Екатерина Д.
    4.8 (37 отзывов)
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два об... Читать все
    Более 5 лет помогаю в написании работ от простых учебных заданий и магистерских диссертаций до реальных бизнес-планов и проектов для открытия своего дела. Имею два образования: экономист-менеджер и маркетолог. Буду рада помочь и Вам.
    #Кандидатские #Магистерские
    55 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ

    Другие учебные работы по предмету

    Интеллектуальный анализ текстовых данных с rnприменением методов машинного обучения
    📅 2019год
    🏢 Национальный исследовательский Томский политехнический университет (ТПУ)