Top.Mail.Ru

Сравнительный анализ алгоритмов машинного обучения в задачах исследования фондового рынка

Шульга Валентин Александрович
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Объект исследования – Проведение анализа различных методов машинного обучения, архитектур нейросетей, библиотек и инструментов, с целью их дальнейшего применения для рассматриваемой задачи. Поиск, предобработка, оптимизация и нормализация данных для обучения и тестирования и программная реализация модели.
Работа состоит из введения, обзора литературы, постановки задачи, четырёх глав, вывода, заключения и списка использованной литературы.
В ведении раскрывается актуальность выбранной темы. В обзоре литературы мною рассматриваются книги, интернет-статьи и публикации относящиеся к данной задаче. Далее ставится задача проводимого исследования.
В первой и второй главе проводится анализ различных алгоритмов машинного обучения, обзор библиотек и фреймворков используемых в работе.
В третьей и четвертой главе проводится построение и настройка моделей и визуализация результатов в виде графиков.
В выводе перечислены и охарактеризованы полученные результаты исследования, и предложены способы улучшения результатов в дальнейшем.
В заключении кратко проведено описание выполненных передо мною задач и подводятся итоги данной работы.

Используемые сокращения и определения 3
Введение 4
Постановка задачи 7
Обзор литературы 8

ГЛАВА 1. Анализ методов глубинного обучения, библиотек и
инструментов 10
1.1. Рекуррентная нейронная сеть (RNN) – LSTM………………………………………11
1.2. MLP…………………………………………………………………………………………………..13
ГЛАВА 2. Алгоритмы машинного обучения 16
2.1. Регуляризация………………..………………………………………………………….16
2.2. Линейная регрессия…………………………………………………………………………..19
2.3. Случайный лес…………………………………………………………………………..22
2.4. K-соседи……………………………………………………………………………………24
2.5. Функции потерь…………………………………………………………………………..25
2.6. Библиотеки и инструменты………………………………………………………………26

ГЛАВА 3. Подготовка данных и построение предсказательной модели.
Обучение 28
3.1. Набор данных. Методика прогноза. OHLC….…………………………………28
3.2. Подготовка данных………………………………………………………………………….30
3.3. Нормализация данных..…………………………………………………..33
3.4. Настройка и построение моделей……………………………………………………..34
ГЛАВА 4. Визуализация и результаты 43
4.1. Реализация……………………………………………………………………………………..43

Выводы 53
Заключение 54
Список литературы 55
Используемые сокращения и определения

Приведём основные понятия и термины, используемые в данной работе:

RNN – рекуррентная нейронная сеть, это вид нейронных сетей, где связи
между элементами образуют направленную последовательность. Благодаря
этому появляется возможность обрабатывать серии событий во времени или
последовательные пространственные цепочки.

LSTM – Долгая краткосрочная память. Разновидность архитектуры
рекуррентных нейронных сетей.

Нейрон — это вычислительная единица, которая получает
информацию, производит над ней простые вычисления и передает ее дальше.

Синапс – связь между несколькими нейронами.

Цена закрытия (closing price) –цена последней сделки,
зарегистрированная при закрытии срочной биржи по окончании рабочего
дня.

Объём (volume) – технический индикатор, отражающий реальный
объём (оборот) торгов по количеству купленных, проданных к примеру, акций
за выбранный промежуток времени.

Эпоха – один проход по всему набору данных, используемый для
разделения обучения на отдельные фазы, важно для ведения логов и
периодической оценки.

МО- Машинное обучение

НС – Нейронная сеть

LR – Linear Regression

Прогнозирование фондового рынка – это попытка определить будущую
стоимость акций компании или другого финансового инструмента, торгуемого
на бирже. Успешное прогнозирование будущей цены акций может принести
хорошую прибыль.

Гипотеза об эффективном рынке говорит, что цены на акции отражают
всю имеющуюся в настоящее время информацию, и любые изменения цен,
которые не основаны на недавно выявленной информации, по своей сути
непредсказуемы. Другие не согласны, и те, у кого есть эта точка зрения,
обладают бесчисленными методами и технологиями, которые
предположительно позволяют им получать информацию о будущих ценах.

Из полученных результатов следует, что точнее всего оказались модели
LinearRegression и RandomForestRegressor. Причём модели Линейной
регрессии именно без применения различных регуляризаций даже
после тщательной нормализации данных. Возможно, такой результат
был обусловлен спецификой исследуемых данных.
Выполненная работа показывает отсутствие паттернов в
техническом анализе данных данного рода задач. Возможно такие
паттерны имели место, если производилась бы классификация и к тому
же брались, к примеру, минутные цены внутри одного дня и для них
осуществлялись бы предсказания.
В результате исследования также можно отметить, что если в
одном случае имеется картина прогноза за 10 дней и поведение цены
произошло одним образом на 11-й день, то в следующий раз при
повторении точно такой же ситуации она может повести себя
совершенно случайным образом.
Поэтому, и нейронные сети, и обычные алгоритмы либо сильно
ошибаются, либо наконец понимают, что самой выигрышной
стратегией будет являться предсказание где цена останется на уровне
предыдущего дня. То есть с равной вероятностью подъёма вниз или
вверх. Тогда ошибка начнёт уменьшаться, и предсказания начнёт
строиться по этому принципу.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Шагали Е. УрГЭУ 2007, Экономика, преподаватель
    4.4 (59 отзывов)
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и... Читать все
    Серьезно отношусь к тренировке собственного интеллекта, поэтому постоянно учусь сама и с удовольствием пишу для других. За 15 лет работы выполнила более 600 дипломов и диссертаций, Есть любимые темы - они дешевле обойдутся, ибо в радость)
    #Кандидатские #Магистерские
    76 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ
    Анна Александровна Б. Воронежский государственный университет инженерных технол...
    4.8 (30 отзывов)
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственно... Читать все
    Окончила магистратуру Воронежского государственного университета в 2009 г. В 2014 г. защитила кандидатскую диссертацию. С 2010 г. преподаю в Воронежском государственном университете инженерных технологий.
    #Кандидатские #Магистерские
    66 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Мария М. УГНТУ 2017, ТФ, преподаватель
    5 (14 отзывов)
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ... Читать все
    Имею 3 высших образования в сфере Экологии и техносферной безопасности (бакалавриат, магистратура, аспирантура), работаю на кафедре экологии одного из опорных ВУЗов РФ. Большой опыт в написании курсовых, дипломов, диссертаций.
    #Кандидатские #Магистерские
    27 Выполненных работ
    Егор В. кандидат наук, доцент
    5 (428 отзывов)
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Ск... Читать все
    Здравствуйте. Занимаюсь выполнением работ более 14 лет. Очень большой опыт. Более 400 успешно защищенных дипломов и диссертаций. Берусь только со 100% уверенностью. Скорее всего Ваш заказ будет выполнен раньше срока.
    #Кандидатские #Магистерские
    694 Выполненных работы
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет