Теоретико-игровая модель ромбовидной иерархической структуры

Пругло Лев Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Исследован вопрос построения ситуации равновесия по Нэшу в ромбовидной игре Г. В частности доказана лемма о существовании ситуации равновесия по Нэшу. Конкретизирована теоретико-игровая модель через определение множеств стратегий игроков, в частности, описание множеств стратегий системами линейных неравенств. Показано, что добавление связи поставок ресурсов между центром и игроком нижнего уровня приводит к появлению второй системы неравенств игрока нижнего уровня, которая учитывает формализацию производства с использованием ресурсов управляющего центра отдельно от производства с помощью ресурсов игроков среднего уровня. Построены оптимизационные задачи линейного и нелинейного программирования с параметрами и показана возможность их использования для нахождения ситуации равновесия по Нэшу. Для упрощения задачи введена кооперативная подыгра между игроками среднего уровня. Разработаны и учтены три варианта характеристических функций игроков среднего уровня для вычисления тремя разными способами минимальной гарантированной полезности, необходимой для вычисления вектора Шепли – принятого принципа оптимальности. Представлены численные примеры, показывающие различные значения вектора Шепли при использовании трех различных подходов к определению минимальной гарантированной полезности. Сформулирована в общем виде кооперативная игра на ромбовидной структуре. Для каждой из коалиции в кооперативной игре были выведены формулы для вычисления вектора Шепли. Для программной реализации был составлен алгоритм с модифицированным методом Монте-Карло, который позволил конкретнее описать методику случайного поиска для нахождения ситуации равновесия по Нэшу, значений характеристических функций в кооперативной игре и вектора Шепли через полное покрытие области допустимых решений систем линейных неравенств игроков среднего уровня. Была определена структура алгоритма, проведен алгоритмический анализ и выявлены особенности применения модифицированного метода Монте-Карло к решению задачи. По алгоритму была построена программная реализация, которая позволила численно решить данную задачу. Приведен пример выполнения программы по заданному алгоритму.

Введение 2
Обзор литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Глава I Ромбовидная иерархическая структура 4
1.1. Описание теоретико-игровой модели . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Постановка задач оптимизации . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Формулировка кооперативной игры . . . . . . . . . . . . . . . . . . . . . . . . 16

Глава II Численный эксперимент 19
2.1. Модификация метода Монте-Карло и алгоритм программы . . . . . . . . . . 19
2.2. Результаты эксперимента с нахождением ситуации равновесия по Нэшу . . . 39
2.3. Результаты эксперимента с кооперативной игрой . . . . . . . . . . . . . . . . . 42

Заключение 45

Список литературы 47

Приложение 48

Задача относится к проблеме распределения ресурсов в иерархической структуре. В
работе [10] представлена модель классической иерархической игры, в которой задан один
управляющий центр и некоторое число подчиненных подразделений с разными связями
между игроками. В данной работе мы рассмотрим расширение этой математической мо-
дели.
В иерархической многошаговой игре с полной информацией геометрическая структура
самой игры является ромбом, то есть из одного центра ресурсы поступают в два подчи-
ненных подразделения, а они, в свою очередь, посылают произведенную промежуточную
продукцию последнему подразделению. Последнее подразделение производит продукцию,
от которой зависит величина полезности каждого игрока. Теоретико-игровые модели, ос-
нованные на такой структуре отношений игроков, называются ромбовидными. Рассмат-
ривается модель ромбовидной структуры иерархической игры с расширением, в которой
присутствует прямая связь между распределяющим центром и нижним производящим
подразделением.
Интерпретацией данной задачи может служить экономическая, экологическая или меж-
региональная характеристика, когда какой-то ресурс, в рамках межрегиональной про-
блематики, например воспринимаемый как человеческий капитал, распределяется феде-
ральным центром, а те, в свою очередь, отправляют его в муниципальные районы. Либо
экономическая иерархия с предприятиями, а именно в случае, когда в конгломерате от
управляющего центра распределяются финансы. Другой экономической интерпретацией
данных процессов может служить несовершенная конкуренция, когда в ходе конфлик-
тогенеза среди разных экономических агентов выстраивается иерархическая структура
монопольного подчинения. В рамках этой работы будем считать такую структуру уже
сложившейся. Для игры с характеристической функцией будет определена проблема по-
средничества и производственной кооперации в коалиционном разбиении подмножества
игроков всех уровней.
Целью данной работы является нахождение ситуации равновесия по Нэшу в общем и
численном виде игры Γ, и получение значений определенных характеристических функ-
ций кооперативной игры с распределением трансферабельной полезности между игроками
согласно принципу оптимальности – вектору Шепли, для чего необходима разработка ал-
горитма и программной реализации по математической модели, заданной на ромбовидной
структуре.
Рассмотрен процесс нахождения ситуации равновесия по Нэшу в определенной игре Γ.
Для этого доказана лемма о существовании ситуации равновесия по Нэшу и игре Γ. Кон-
кретизирована теоретико-игровая модель через определение множеств стратегий игроков,
в частности, составление систем неравенств. Показано, что добавление связи поставок
ресурсов между центром и игроком нижнего уровня приводит к появлению второй систе-
мы неравенств игрока нижнего уровня, которая учитывает формализацию производства
с использованием ресурсов управляющего центра отдельно от производства с помощью
ресурсов игроков среднего уровня. Были построены оптимизационные задачи линейно-
го и нелинейного программирования с параметрами и показана возможность нахожде-
ния ситуации равновесия по Нэшу. Чтобы разрешить проблему нахождения равновесия
в игре Γ была введена кооперативная подыгра между игроками среднего уровня. Раз-
работано и учтено три варианта одноэлементных характеристических функций игроков
среднего уровня для вычисления тремя различными способами минимальной гарантиро-
ванной полезности, необходимой для вычисления вектора Шепли – принятого принципа
оптимальности. Представлены численные примеры, показывающие специфику значений
вектора Шепли при использовании трех различных подходов к определению минималь-
ной гарантированной полезности. Сформулирована в общем виде кооперативная игра на

В данной работе рассмотрена проблематика задачи распределения ресурсов в ромбо-
видной иерархической теоретико-игровой модели, которая описывает свойства рыночных,
межрегиональных, экологических и иных классов задач.
Конкретизация теоретико-игровой модели через определение множеств стратегий игро-
ков в игре Γ показала, что добавление связи поставок ресурсов между центром и игроком
нижнего уровня, которая учитывает формализацию производства с использованием ресур-
сов управляющего центра отдельно от производства с использованием ресурсов игроков
среднего уровня, приводит к появлению дополнительной системы линейных неравенств
игрока нижнего уровня. Данное расширение обосновывается тем, что игроки среднего
уровня посылают игроку нижнего уровне не тот же набор типов ресурсов, что и управля-
ющий центр. Это существенное для реальных задач дополнение является оригинальным
и не рассматривалось ранее в литературе.
Рассмотрен процесс нахождения ситуации равновесия по Нэшу в определенной игре Γ.
Для этого доказана лемма о существовании ситуации равновесия по Нэшу и игре Γ. Кон-
кретизирована теоретико-игровая модель через определение множеств стратегий игроков,
в частности, составление систем неравенств. Показано, что добавление связи поставок
ресурсов между центром и игроком нижнего уровня приводит к появлению второй систе-
мы неравенств игрока нижнего уровня, которая учитывает формализацию производства
с использованием ресурсов управляющего центра отдельно от производства с помощью
ресурсов игроков среднего уровня. Были построены оптимизационные задачи линейно-
го и нелинейного программирования с параметрами и показана возможность нахожде-
ния ситуации равновесия по Нэшу. Чтобы разрешить проблему нахождения равновесия
в игре Γ была введена кооперативная подыгра между игроками среднего уровня. Раз-
работано и учтено три варианта одноэлементных характеристических функций игроков
среднего уровня для вычисления тремя различными способами минимальной гарантиро-
ванной полезности, необходимой для вычисления вектора Шепли – принятого принципа
оптимальности. Представлены численные примеры, показывающие специфику значений
вектора Шепли при использовании трех различных подходов к определению минималь-
ной гарантированной полезности. Сформулирована в общем виде кооперативная игра на
ромбовидной структуре, составлены равенства, которые определяют действия игроков в
рамках антагонистической игры двух коалиций. Для каждой из коалиции в кооператив-
ной игре выведены формулы для вычисления вектора Шепли. Для программной реализа-
ции составлен алгоритм с модифицированным методом Монте-Карло, который позволил
конкретнее описать методику случайного поиска для нахождения ситуации равновесия
по Нэшу, значений характеристических функций в кооперативной игре и вектора Ше-
пли через полное покрытие области допустимых решений систем линейных неравенств
игроков среднего уровня. Определена структура алгоритма, проведен алгоритмический
анализ и выявлены особенности применения модифицированного метода Монте-Карло к
решению задачи. По алгоритму построена программная реализация, которая позволила
численно решить данную задачу. Приведен пример выполнения программы по заданному
алгоритму, который показывает специфику в использовании трех подходов к определению
одноэлементных характеристических функций.
В ходе решения численного примера наглядно показано, что от способа расчета ми-
нимальной гарантированной полезности зависит то, какие значения компонент вектора
Шепли будут найдены для игроков среднего уровня, и то, что игрокам не всегда выгод-
но исходить из “оптимистичного”варианта, при котором управляющий центр отправляет
только один или два нулевых вектора ресурсов непосредственно игрокам среднего уровня.
В рамках продолжения данной научной проблематики возможны улучшения по части эв-
ристик и методов, которые можно использовать для решения систем линейных неравенств
в данной структуре. Рассмотрение динамики процесса также позволит полно раскрыть
потенциал представленной иерархической структуры. Не исключается также дальнейшее
расширение структуры для лучшего отражения отношений в иерархии между игроками.

[1] Amer R., Carreras F. Cooperation Indices and Weighted Shapley Values.
Mathematics of Operations Research. – Informs, USA, 1997, 14p. URL:
https://pubsonline.informs.org/doi/pdf/10.1287/moor.22.4.955

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Последние выполненные заказы

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Вики Р.
    5 (44 отзыва)
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написан... Читать все
    Наличие красного диплома УрГЮУ по специальности юрист. Опыт работы в профессии - сфера банкротства. Уровень выполняемых работ - до магистерских диссертаций. Написание письменных работ для меня в удовольствие.Всегда качественно.
    #Кандидатские #Магистерские
    60 Выполненных работ
    Анастасия Л. аспирант
    5 (8 отзывов)
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибост... Читать все
    Работаю в сфере метрологического обеспечения. Защищаю кандидатскую диссертацию. Основной профиль: Метрология, стандартизация и сертификация. Оптико-электронное прибостроение, управление качеством
    #Кандидатские #Магистерские
    10 Выполненных работ
    Лидия К.
    4.5 (330 отзывов)
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии ... Читать все
    Образование высшее (2009 год) педагог-психолог (УрГПУ). В 2013 году получено образование магистр психологии. Опыт преподавательской деятельности в области психологии и педагогики. Написание диссертаций, ВКР, курсовых и иных видов работ.
    #Кандидатские #Магистерские
    592 Выполненных работы
    Яна К. ТюмГУ 2004, ГМУ, выпускник
    5 (8 отзывов)
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соот... Читать все
    Помощь в написании магистерских диссертаций, курсовых, контрольных работ, рефератов, статей, повышение уникальности текста(ручной рерайт), качественно и в срок, в соответствии с Вашими требованиями.
    #Кандидатские #Магистерские
    12 Выполненных работ
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет