Теоретико-игровая модель ромбовидной иерархической структуры

Пругло Лев Сергеевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Исследован вопрос построения ситуации равновесия по Нэшу в ромбовидной игре Г. В частности доказана лемма о существовании ситуации равновесия по Нэшу. Конкретизирована теоретико-игровая модель через определение множеств стратегий игроков, в частности, описание множеств стратегий системами линейных неравенств. Показано, что добавление связи поставок ресурсов между центром и игроком нижнего уровня приводит к появлению второй системы неравенств игрока нижнего уровня, которая учитывает формализацию производства с использованием ресурсов управляющего центра отдельно от производства с помощью ресурсов игроков среднего уровня. Построены оптимизационные задачи линейного и нелинейного программирования с параметрами и показана возможность их использования для нахождения ситуации равновесия по Нэшу. Для упрощения задачи введена кооперативная подыгра между игроками среднего уровня. Разработаны и учтены три варианта характеристических функций игроков среднего уровня для вычисления тремя разными способами минимальной гарантированной полезности, необходимой для вычисления вектора Шепли – принятого принципа оптимальности. Представлены численные примеры, показывающие различные значения вектора Шепли при использовании трех различных подходов к определению минимальной гарантированной полезности. Сформулирована в общем виде кооперативная игра на ромбовидной структуре. Для каждой из коалиции в кооперативной игре были выведены формулы для вычисления вектора Шепли. Для программной реализации был составлен алгоритм с модифицированным методом Монте-Карло, который позволил конкретнее описать методику случайного поиска для нахождения ситуации равновесия по Нэшу, значений характеристических функций в кооперативной игре и вектора Шепли через полное покрытие области допустимых решений систем линейных неравенств игроков среднего уровня. Была определена структура алгоритма, проведен алгоритмический анализ и выявлены особенности применения модифицированного метода Монте-Карло к решению задачи. По алгоритму была построена программная реализация, которая позволила численно решить данную задачу. Приведен пример выполнения программы по заданному алгоритму.

Введение 2
Обзор литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Глава I Ромбовидная иерархическая структура 4
1.1. Описание теоретико-игровой модели . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Постановка задач оптимизации . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3. Формулировка кооперативной игры . . . . . . . . . . . . . . . . . . . . . . . . 16

Глава II Численный эксперимент 19
2.1. Модификация метода Монте-Карло и алгоритм программы . . . . . . . . . . 19
2.2. Результаты эксперимента с нахождением ситуации равновесия по Нэшу . . . 39
2.3. Результаты эксперимента с кооперативной игрой . . . . . . . . . . . . . . . . . 42

Заключение 45

Список литературы 47

Приложение 48

Задача относится к проблеме распределения ресурсов в иерархической структуре. В
работе [10] представлена модель классической иерархической игры, в которой задан один
управляющий центр и некоторое число подчиненных подразделений с разными связями
между игроками. В данной работе мы рассмотрим расширение этой математической мо-
дели.
В иерархической многошаговой игре с полной информацией геометрическая структура
самой игры является ромбом, то есть из одного центра ресурсы поступают в два подчи-
ненных подразделения, а они, в свою очередь, посылают произведенную промежуточную
продукцию последнему подразделению. Последнее подразделение производит продукцию,
от которой зависит величина полезности каждого игрока. Теоретико-игровые модели, ос-
нованные на такой структуре отношений игроков, называются ромбовидными. Рассмат-
ривается модель ромбовидной структуры иерархической игры с расширением, в которой
присутствует прямая связь между распределяющим центром и нижним производящим
подразделением.
Интерпретацией данной задачи может служить экономическая, экологическая или меж-
региональная характеристика, когда какой-то ресурс, в рамках межрегиональной про-
блематики, например воспринимаемый как человеческий капитал, распределяется феде-
ральным центром, а те, в свою очередь, отправляют его в муниципальные районы. Либо
экономическая иерархия с предприятиями, а именно в случае, когда в конгломерате от
управляющего центра распределяются финансы. Другой экономической интерпретацией
данных процессов может служить несовершенная конкуренция, когда в ходе конфлик-
тогенеза среди разных экономических агентов выстраивается иерархическая структура
монопольного подчинения. В рамках этой работы будем считать такую структуру уже
сложившейся. Для игры с характеристической функцией будет определена проблема по-
средничества и производственной кооперации в коалиционном разбиении подмножества
игроков всех уровней.
Целью данной работы является нахождение ситуации равновесия по Нэшу в общем и
численном виде игры Γ, и получение значений определенных характеристических функ-
ций кооперативной игры с распределением трансферабельной полезности между игроками
согласно принципу оптимальности – вектору Шепли, для чего необходима разработка ал-
горитма и программной реализации по математической модели, заданной на ромбовидной
структуре.
Рассмотрен процесс нахождения ситуации равновесия по Нэшу в определенной игре Γ.
Для этого доказана лемма о существовании ситуации равновесия по Нэшу и игре Γ. Кон-
кретизирована теоретико-игровая модель через определение множеств стратегий игроков,
в частности, составление систем неравенств. Показано, что добавление связи поставок
ресурсов между центром и игроком нижнего уровня приводит к появлению второй систе-
мы неравенств игрока нижнего уровня, которая учитывает формализацию производства
с использованием ресурсов управляющего центра отдельно от производства с помощью
ресурсов игроков среднего уровня. Были построены оптимизационные задачи линейно-
го и нелинейного программирования с параметрами и показана возможность нахожде-
ния ситуации равновесия по Нэшу. Чтобы разрешить проблему нахождения равновесия
в игре Γ была введена кооперативная подыгра между игроками среднего уровня. Раз-
работано и учтено три варианта одноэлементных характеристических функций игроков
среднего уровня для вычисления тремя различными способами минимальной гарантиро-
ванной полезности, необходимой для вычисления вектора Шепли – принятого принципа
оптимальности. Представлены численные примеры, показывающие специфику значений
вектора Шепли при использовании трех различных подходов к определению минималь-
ной гарантированной полезности. Сформулирована в общем виде кооперативная игра на

В данной работе рассмотрена проблематика задачи распределения ресурсов в ромбо-
видной иерархической теоретико-игровой модели, которая описывает свойства рыночных,
межрегиональных, экологических и иных классов задач.
Конкретизация теоретико-игровой модели через определение множеств стратегий игро-
ков в игре Γ показала, что добавление связи поставок ресурсов между центром и игроком
нижнего уровня, которая учитывает формализацию производства с использованием ресур-
сов управляющего центра отдельно от производства с использованием ресурсов игроков
среднего уровня, приводит к появлению дополнительной системы линейных неравенств
игрока нижнего уровня. Данное расширение обосновывается тем, что игроки среднего
уровня посылают игроку нижнего уровне не тот же набор типов ресурсов, что и управля-
ющий центр. Это существенное для реальных задач дополнение является оригинальным
и не рассматривалось ранее в литературе.
Рассмотрен процесс нахождения ситуации равновесия по Нэшу в определенной игре Γ.
Для этого доказана лемма о существовании ситуации равновесия по Нэшу и игре Γ. Кон-
кретизирована теоретико-игровая модель через определение множеств стратегий игроков,
в частности, составление систем неравенств. Показано, что добавление связи поставок
ресурсов между центром и игроком нижнего уровня приводит к появлению второй систе-
мы неравенств игрока нижнего уровня, которая учитывает формализацию производства
с использованием ресурсов управляющего центра отдельно от производства с помощью
ресурсов игроков среднего уровня. Были построены оптимизационные задачи линейно-
го и нелинейного программирования с параметрами и показана возможность нахожде-
ния ситуации равновесия по Нэшу. Чтобы разрешить проблему нахождения равновесия
в игре Γ была введена кооперативная подыгра между игроками среднего уровня. Раз-
работано и учтено три варианта одноэлементных характеристических функций игроков
среднего уровня для вычисления тремя различными способами минимальной гарантиро-
ванной полезности, необходимой для вычисления вектора Шепли – принятого принципа
оптимальности. Представлены численные примеры, показывающие специфику значений
вектора Шепли при использовании трех различных подходов к определению минималь-
ной гарантированной полезности. Сформулирована в общем виде кооперативная игра на
ромбовидной структуре, составлены равенства, которые определяют действия игроков в
рамках антагонистической игры двух коалиций. Для каждой из коалиции в кооператив-
ной игре выведены формулы для вычисления вектора Шепли. Для программной реализа-
ции составлен алгоритм с модифицированным методом Монте-Карло, который позволил
конкретнее описать методику случайного поиска для нахождения ситуации равновесия
по Нэшу, значений характеристических функций в кооперативной игре и вектора Ше-
пли через полное покрытие области допустимых решений систем линейных неравенств
игроков среднего уровня. Определена структура алгоритма, проведен алгоритмический
анализ и выявлены особенности применения модифицированного метода Монте-Карло к
решению задачи. По алгоритму построена программная реализация, которая позволила
численно решить данную задачу. Приведен пример выполнения программы по заданному
алгоритму, который показывает специфику в использовании трех подходов к определению
одноэлементных характеристических функций.
В ходе решения численного примера наглядно показано, что от способа расчета ми-
нимальной гарантированной полезности зависит то, какие значения компонент вектора
Шепли будут найдены для игроков среднего уровня, и то, что игрокам не всегда выгод-
но исходить из “оптимистичного”варианта, при котором управляющий центр отправляет
только один или два нулевых вектора ресурсов непосредственно игрокам среднего уровня.
В рамках продолжения данной научной проблематики возможны улучшения по части эв-
ристик и методов, которые можно использовать для решения систем линейных неравенств
в данной структуре. Рассмотрение динамики процесса также позволит полно раскрыть
потенциал представленной иерархической структуры. Не исключается также дальнейшее
расширение структуры для лучшего отражения отношений в иерархии между игроками.

[1] Amer R., Carreras F. Cooperation Indices and Weighted Shapley Values.
Mathematics of Operations Research. – Informs, USA, 1997, 14p. URL:
https://pubsonline.informs.org/doi/pdf/10.1287/moor.22.4.955

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Анна С. СФ ПГУ им. М.В. Ломоносова 2004, филологический, преподав...
    4.8 (9 отзывов)
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания... Читать все
    Преподаю англ язык более 10 лет, есть опыт работы в университете, школе и студии англ языка. Защитила кандидатскую диссертацию в 2009 году. Имею большой опыт написания и проверки (в качестве преподавателя) контрольных и курсовых работ.
    #Кандидатские #Магистерские
    16 Выполненных работ
    Александра С.
    5 (91 отзыв)
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повы... Читать все
    Красный диплом референта-аналитика информационных ресурсов, 8 лет преподавания. Опыт написания работ вплоть до докторских диссертаций. Отдельно специализируюсь на повышении уникальности текста и оформлении библиографических ссылок по ГОСТу.
    #Кандидатские #Магистерские
    132 Выполненных работы
    Катерина М. кандидат наук, доцент
    4.9 (522 отзыва)
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    Кандидат технических наук. Специализируюсь на выполнении работ по метрологии и стандартизации
    #Кандидатские #Магистерские
    836 Выполненных работ
    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Дмитрий М. БГАТУ 2001, электрификации, выпускник
    4.8 (17 отзывов)
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал стать... Читать все
    Помогаю с выполнением курсовых проектов и контрольных работ по электроснабжению, электроосвещению, электрическим машинам, электротехнике. Занимался наукой, писал статьи, патенты, кандидатскую диссертацию, преподавал. Занимаюсь этим с 2003.
    #Кандидатские #Магистерские
    19 Выполненных работ

    Другие учебные работы по предмету

    Кооперативные игры на гиперграфах
    📅 2019год
    🏢 Санкт-Петербургский государственный университет