Математическое моделирование антигенного сходства штаммов вируса гриппа с помощью вейвлет-преобразования : диссертация на соискание ученой степени кандидата физико-математических наук : 05.13.18

📅 2018 год
Форгани, М.
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

Основные обозначения и соглашения 4

Введение 8

1 Модель 41
1.1 Математическая постановка задачи . . . . . . . . . . . . . . 41
1.2 Линейная модель антигенного сходства . . . . . . . . . . . . 46
1.3 Вывод по главе . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Численные методы и оптимизация 50
2.1 Численное отображение белка . . . . . . . . . . . . . . . . . 51
2.2 Численное представление мутации . . . . . . . . . . . . . . . 55
2.2.1 Гибридные признаки: комбинирование методов Ву и
Яня с глобальными дескрипторами . . . . . . . . . . 56
2.2.2 Преобразования вейвлет и вейвлет-пакет . . . . . . . 59
2.2.3 Сортировки последовательностей белка с помощью ПВП 64
2.3 Метод декомпозиции вейвлет-частиц . . . . . . . . . . . . . . 68
2.4 Первый вычислительный эксперимент: Изучение изменения
аминокислоты в одной позиции с применением ДВЧ . . . . . 77
2.5 Трудоемкость алгоритма ДВЧ . . . . . . . . . . . . . . . . . 79
2.6 Второй вычислительный эксперимент: Оптимальная комби-
нация эвристического алгоритма с методом ДВЧ . . . . . . . 81
2.7 Третий вычислительный эксперимент: Демонстрация значи-
мости порядка соседей по отношению к ДВЧ . . . . . . . . . 86
2.8 Формулировка метода декомпозиции вейвлет-частиц . . . . . 88
2.9 Формула частицы . . . . . . . . . . . . . . . . . . . . . . . . 99
2.10 Преобразования декомпозиции вейвлет-частиц . . . . . . . . 105
2.11 Итерационный процесс поиска наилучшей частицы . . . . . 110
2.12 Альтернативный метод вычисления декомпозиции частиц . . 112
2.13 Четвертый вычислительный эксперимент: Итерационная де-
композиция частиц . . . . . . . . . . . . . . . . . . . . . . . . 114
2.14 Выводы по главе . . . . . . . . . . . . . . . . . . . . . . . . . 123

3 Программная реализация 125
3.1 Кластеризация последовательности белка . . . . . . . . . . . 126
3.2 Трехмерное дерево эволюции . . . . . . . . . . . . . . . . . . 127
3.3 Программный комплекс МАГВ и его реализация . . . . . . 131
3.4 Выводы по главе . . . . . . . . . . . . . . . . . . . . . . . . . 139

Заключение 142
Краткое описание цели, задач и подходов работы . . . . . . . . . 142
Основные результаты . . . . . . . . . . . . . . . . . . . . . . . . . 144
Перспективы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Приложение A 146
Вирусы гриппа и их воздействие . . . . . . . . . . . . . . . . . . . 147
Антигенная изменчивость и антигенный дрейф . . . . . . . . . . 148
Белок гемагглютинин и его структура . . . . . . . . . . . . . . . . 150
Вакцинация и антигенная картография . . . . . . . . . . . . . . . 152

Приложение B 158

Литература 160
Основные обозначения и соглашения

AAindex — Amino Acid Index Database (база данных аминокислотных
индексов и матриц мутаций аминокислот).
ACC — Absolute value of correlation coefficient (абсолютная величи-
на коэффициента корреляции).
BLAST — Basic Local Alignment Search Tool (средство поиска основ-
ного локального выравнивания).
HA — Hemagglutinin (гемагглютинин), поверхностный белок ви-
руса гриппа, обеспечивающий способность вируса присо-
единяться к клетке хозяина.
NA — Neuraminidase (нейраминидаза), поверхностный белок ви-
руса гриппа, обеспечивающий способность вируса освобо-
диться от клетки хозяина.
АВКК — Абсолютная величина коэффициента корреляции (absolute
value of correlation coefficient).
АИГ — Анализ ингибирования гемагглютинации (hemagglutination
inhibition assay) – стандартный метод серологического
определения инфекции гриппа и оценки сходства между
разными штамами вируса гриппа.
АЧО — Алфавитно-численное отображение (alphabetical-to-
numerical mapping).
ВИ — Метод взаимной информации (the mutual information), ко-
торый способен измерить взаимную зависимость между
двумя переменными.
ВОЗ — Всемирная организация здравоохранения (World Health
Organization).
ВПП — Время поиска признака (feature search time).
ВП — Вейвлет-преобразование (wavelet transform).
ГДА — График динамики аллели (allele dynamics plot) – метод, ко-
торый визуализирует эволюционную динамику различных
аллелей гена в популяции с течением времени и указывает
на аллели, которые, скорее всего, будут подвергнуты на-
правленному отбору.
ГСЭГО — Глобальная система эпиднадзора за гриппом и принятия
ответных мер (the global influenza surveillance system) – это
уникальная всемирная сеть, способная быстро выявлять и
реагировать на вспышки гриппа, в том числе с пандемиче-
ским потенциалом.
ДНК — Дезоксирибонуклеиновая кислота (deoxyribonucleic acid) –
это макромолекула (одна из трёх основных, две другие –
РНК и белки), обеспечивающая хранение, передачу из по-
коления в поколение и реализацию генетической програм-
мы развития и функционирования живых организмов.
ДВЧ — Метод декомпозиции вейвлет-частиц (decomposition of
wavelet-particles).
ИС — Метод информационного спектра (the informational
spectrum) – метод виртуальной спектроскопии для
структурно-функционального анализа белков в идентифи-
кации функциональных белковых доменов.
КИС — Метод консенсусного информационного спектра (consensus
informational spectrum), используемого как часть ана-
лиза частотной области кросс-корреляции или кросс-
ковариации между двумя временными рядами.
КМА — Кратномасштабный анализ (multiresolution analysis), ин-
струмент построения базисов вейвлета.
КМШ — Классическое многомерное шкалирование (classical
multidimensional scaling) – это метод анализа и ви-
зуализации данных с помощью расположения точек,
соответствующих изучаемым (шкалируемым) объектам,
в пространстве меньшей размерности, чем пространство
признаков объектов.
МАГВ — Модель антигенности вируса гриппа (model of influenza
virus antigenicity).
МГК — Метод главных компонент (principal component analysis),
один из основных способов уменьшить размерность дан-
ных, потеряв наименьшее количество информации.
МШ — Многомерное шкалирование (multidimensional scaling) – ме-
тод анализа и визуализации данных с помощью расположе-
ния точек, соответствующих изучаемым (шкалируемым)
объектам, в пространстве меньшей размерности, чем про-
странство признаков объектов.
ОДВЧ — Оператор декомпозиции вейвлет-частиц (wavelet-particles’
decomposition operator).
ОКК — Оптимальное количество кластеров (optimal number of
clusters).
ПВП — Преобразование вейвлет-пакета (wavelet packet transform).
ПВПГ — Потенциальные вирусы пандемического гриппа (potential
pandemic influenza viruses).
ПИ — Прирост информации (the information gain) – метод, поз-
воляющий измерить, насколько информация дает характе-
ристику класса.
ПО — Программное обеспечение (software).
ПУ — Процент улучшения (improvement percentage).
РМР — Резонансная модель распознавания (the resonant
recognition model), является физико-математической
моделью, которая может анализировать взаимодействие
белка и его мишени с использованием методов обработки
сигналов.
РНК — Рибонуклеиновая кислота (ribonucleic acid) – одна из трёх
основных макромолекул (две другие – ДНК и белки), кото-
рая содержится в клетках всех живых организмов и играет
важную роль в кодировании, прочтении, регуляции и вы-
ражении генов.
СММ — Скрытая марковская модель (hidden Markov model) – ста-
тистическая модель, имитирующая работу процесса, похо-
жего на марковский процесс с неизвестными параметрами,
задачей ставится выявленние неизвестных параметров на
основе наблюдаемых.
ФСР — Функция степени расхождения (function of disagreement
degree) – это показатель несоответствия информации.
L2 (R) — Пространство квадратично интегрируемых функций на
числовой прямой со скалярным произведением (space of
square-integrable functions).

Краткое описание цели, решения и результатов иссле-
дования

Выяснение отношения между фенотипом и последовательностями белков
лежит в основе многих генетических исследований, а моделирование фено-
типа на основе этих данных является крайне важной задачей в генетике.
Один из примеров таких задач – это моделирование и прогнозирование
эволюции вируса, особенно по отношению к избеганию иммунного ответа.
Вирус гриппа каждый год наносит огромный ущерб мировой экономике и
влияет на жизнь и здоровье большого количества людей. Субтип гриппа
H1N1 является самым распространенным, поэтому именно он был выбран
для исследования.
Вирус состоит из макромолекул–белков, состоящих из блоков – амино-
кислот. В процессе эволюции вирус избегает иммунного ответа путем за-
мены аминокислот. Эта замена как явление имеет локальное влияние на
регион ее возникновения в белке.
То, что выгодно отличает данную работу от других исследований ма-
тематического моделирования эволюции – это рассмотрение и извлечение
локального влияния замены аминокислоты в разных масштабах путем при-
менения созданного автором метода под названием декомпозиция вейвлет-
частиц.
Белок можно рассматривать как алфавитную последовательность, со-
стоящую из 20 букв, каждая из которых представляет собой конкретную
аминокислоту. Используя физико-химические характеристики аминокис-
лот, каждую букву в последовательности можно заменить на число, отоб-
ражающее ее характеристику. В результате из алфавитной последователь-
ности производится численный одномерный сигнал, к которому можно при-
менить методы обработки сигналов.
Метод декомпозиции вейвлет-частиц основан на теории вейвлет-
преобразования. В итоге применения этого метода к одномерному сигналу,
значение точки сигнала декомпозируется на разных уровнях на мелкие зна-
чения под названием частицы. Каждая частица – это линейная комбинация
точек, находящихся в окрестности целевой точки, которая декомпозиру-
ется из исходного сигнала. Коэффициенты этой комбинации определяют
взаимное влияние комбинируемых аминокислот.
Первый шаг к производству эффективной вакцины против гриппа со-
стоит в измерении сходства между штаммами вируса. Обычно для это-
го применяется долгосрочная лабораторная процедура, основанная на хи-
мической реакции между антителами и вирусом. Во многих исследовани-
ях по моделированию эволюции вируса используются последовательности
белка гемагглютинина (HA от латинского Hemagglutinin), который игра-
ет основную роль в данной лабораторной процедуре. Другими словами,
задача определяется таким образом, что на вход модели подаются две по-
следовательности белка гемагглютинина анализируемых штаммов вируса;
цель состоит в оценке (предсказании) значения их сходства, подтвержда-
емого результатами лабораторных анализов. Чтобы измерить расстояние
между аминокислотами, находящимся в конкретной позиции в анализи-
руемых штаммах, используя метод декомпозиции вейвлет-частиц, произ-
водится множество линейных комбинаций и выбирается та, которая дает
большую корреляцию с результатами лабораторных наблюдений.
Секвенирование, т.е. получение последовательности белка, не настоль-
ко трудоемкий процесс, как лабораторная процедура измерения сходства
между штаммами вируса. Поэтому математическая модель, основанная на
последовательности белка, позволит сохранить время и ресурсы, действо-
вать более оперативно в борьбе с вирусом.
В работе увеличивается точность моделирования с помощью двух фак-
торов. Первый фактор – это рассмотрение аминокислоты как многомерного
объекта, где каждая ее физико-химическая характеристика отображается
в численной форме отдельной координаты. Второй фактор – это рассмот-
рение мутации как локального явления, а не как точечной замены амино-
кислоты. Предполагается, что учет этих факторов при построении модели
позволит уменьшить ошибку моделирования.
Описания генетических понятий, таких как белок гемагглютинина, ана-
лиз ингибирования гемагглютинации, антиген и антигенные участки даны
в приложении А, где предоставлен обзор сведений о вирусе гриппа, его
воздействии, молекулярных характеристиках, способах изменения, вакци-
нации и ее эффективности.
Далее во введении будут рассмотрены:

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Анна В. Инжэкон, студент, кандидат наук
    5 (21 отзыв)
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссе... Читать все
    Выполняю работы по экономическим дисциплинам. Маркетинг, менеджмент, управление персоналом. управление проектами. Есть опыт написания магистерских и кандидатских диссертаций. Работала в маркетинге. Практикующий бизнес-консультант.
    #Кандидатские #Магистерские
    31 Выполненная работа
    Татьяна Б.
    4.6 (92 отзыва)
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские ди... Читать все
    Добрый день, работаю в сфере написания студенческих работ более 7 лет. Всегда довожу своих студентов до защиты с хорошими и отличными баллами (дипломы, магистерские диссертации, курсовые работы средний балл - 4,5). Всегда на связи!
    #Кандидатские #Магистерские
    138 Выполненных работ
    Елена Л. РЭУ им. Г. В. Плеханова 2009, Управления и коммерции, пре...
    4.8 (211 отзывов)
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно исполь... Читать все
    Работа пишется на основе учебников и научных статей, диссертаций, данных официальной статистики. Все источники актуальные за последние 3-5 лет.Активно и уместно использую в работе графический материал (графики рисунки, диаграммы) и таблицы.
    #Кандидатские #Магистерские
    362 Выполненных работы
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Дарья С. Томский государственный университет 2010, Юридический, в...
    4.8 (13 отзывов)
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссерт... Читать все
    Практикую гражданское, семейное право. Преподаю указанные дисциплины в ВУЗе. Выполняла работы на заказ в течение двух лет. Обучалась в аспирантуре, подготовила диссертационное исследование, которое сейчас находится на рассмотрении в совете.
    #Кандидатские #Магистерские
    18 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Алёна В. ВГПУ 2013, исторический, преподаватель
    4.2 (5 отзывов)
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическо... Читать все
    Пишу дипломы, курсовые, диссертации по праву, а также истории и педагогике. Закончила исторический факультет ВГПУ. Имею высшее историческое и дополнительное юридическое образование. В данный момент работаю преподавателем.
    #Кандидатские #Магистерские
    25 Выполненных работ

    Другие учебные работы по предмету

    Модели и алгоритмы параллельной обработки гидроакустической информации линейных антенных решёток
    📅 2022год
    🏢 ФГАОУ ВО «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»
    Математическое моделирование равновесных форм капиллярных поверхностей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»