Моделирование гидравлических и электрических цепей на основе теории вырожденных систем интегро-дифференциальных уравнений

Нгуен, Дык Банг

Обозначенияисоглашения……………………… 4
Введение……………………………….. 6
1. Разрешимостьначально-краевыхзадачдлявырожденныхсистем интегро-дифференциальныхуравнений . 16
1.1 Вспомогательныепонятия…………………… 16
1.2 ЛинейныесистемыИДУ …………………… 24
1.3 КраевыезадачидлясистемИДУиндекса1 . . . . . . . . . . . . . . 34
1.4 КвазилинейныесистемыДАУиИДУ …………….. 41
2. Численныеметодырешенияначально-краевыхзадачдля вырожденных систем интегро-дифференциальных уравнений . . . 47
2.1 Решение начально-краевых задач методом наименьших квадратов . 47
2.2 Программа для реализации метода наименьших квадратов . . . . . 52
2.3 Разностные схемы для решения вырожденных систем ИДУ . . . . 60
2.4 Численныеэксперименты…………………… 62
3. Моделированиегидравлическихиэлектрическихцепей,
записанных в виде вырожденных систем интегро-дифференциальныхуравнений …………….. 66
3.1 Моделированиегидравлическихцепей ……………. 66
3.1.1 Модель потокораспределения при расчетах статических гидравлическихцепей…………………. 66
3.1.2 Представление динамической модели гидравлических цепейввидевырожденнойсистемыИДУ. . . . . . . . . . . 71
Основныеэлементыцепи ………………. 81
Общие принципы формирования моделей электрических цепей …………………………. 84
Представление электрических цепей в виде вырожденных системИДУ ……………………… 87
3
3.1.3 Характеристика объекта моделирования . . . . . . . . . . . . 72
3.1.4 Математическая модель гидравлической цепи связки
«Прямоточныйкотел-турбина» ……………. 77
3.2 Моделированиеэлектрическихцепей …………….. 81
3.3 Исследование моделей гидравлических и электрических цепей . . . 91 3.3.1 Исследование моделей гидравлических цепей . . . . . . . . 91 3.3.2 Исследование моделей электрических цепей . . . . . . . . . 94
4. Программный комплекс для исследования систем . . . . . . . . . . . 96
4.1 Программа для решения гидравлических цепей . . . . . . . . . . . 96 4.1.1 Описаниеструктурыпрограммы……………. 96 4.1.2 Результатырасчетов …………………..104
4.2 Программа для решения электрических цепей . . . . . . . . . . . . 108 4.2.1 Описаниеструктурыпрограммы…………….108 4.2.2 Результатырасчетов …………………..112
Заключение ………………………………117 Списоклитературы ………………………….118 Приложения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Актуальность исследования. В настоящее время многие эксперименталь- ные исследования можно заменить на исследование математических моделей физических процессов или технических устройств. Особенно это актуально при создании тренажеров рабочих мест энергетических и химических устано- вок. Многие модели в технических системах (на cовременном уровне модели- рования) описываются взаимосвязанными системами дифференциальных, ин- тегральных и алгебраических уравнений, которые можно записать в виде си- стем интегро-дифференциальных уравнений с матрицей неполного ранга перед старшей производной искомой вектор-функции. Алгебраические уравнения от- вечают за наличие в моделях балансовых соотношений, в частности, законов сохранения или уравнений состояния, системы дифференциальных уравнений описывают динамику процесса. Если процесс обладает последействием, то ма- тематическая модель может включать и интегральные уравнения. Такие системы принято называть вырожденными системами интегро-дифференциальных урав- нений (ИДУ).
Численное решение краевых и начальных задач для вырожденных систем ИДУ сопряжено с большими трудностями: не существует достаточно развитой теории вырожденных систем ИДУ (недостаточно исследованы свойства разре- шимости, устойчивости решения к малым возмущениям, устойчивости в смыс- ле Ляпунова и т.д.); при переходе к дискретному аналогу вырожденных систем ИДУ существенно меняются свойства разрешимости (исходная задача может иметь решение, а ее дискретный аналог при сколь угодно малом шаге дискре- тизации нет; может иметь место и обратная ситуация); начальные или краевые условия должны принадлежать определенным многообразиям в пространстве фазовых переменных; сколь угодно малое возмущение входных данных может повлечь сколь угодно большое изменение решений.
7
В частности, модели гидравлических и электрических цепей (ГЦ и ЭЦ) описываются вырожденными системами ИДУ. С практической точки зрения ак- туальность обусловлена тем, что модели гидравлических и электрических цепей являются составной частью моделей сложных энергетических установок (па- ровых котлов, турбин, систем регенераций либо всего комплекса энергоблока тепловых электростаций). От качества моделирования гидравлических и элек- трических цепей существенно зависит качество комплексной модели всей энер- гоустановки.
Обзор литературы по теме диссертации. В течение последних сорока лет большое внимание уделяется системам дифференциальных уравнений с матри- цей неполного ранга или вырожденными оператором в области определения при старшей производной искомой вектор-функции и численным методам их реше- ния [9;17;41;74–76]. Вырожденные системы ИДУ и особенно численные методы решения краевых задач для них в прошлое тридцатилетие исследовались фраг- ментарно. Сейчас это быстро растущая область исследования. Ранее изучались только постановки начальных задач. Краевые задачи практически не рассматри- вались. Методы, применяемые в других работах (см., например, [4; 7]) при ре- шении краевых задач для дифференциально-алгебраических уравнений (ДАУ), сложно адаптировать к нашим задачам. А для систем с прямоугольными матри- цами коэффициентов это сделать и вовсе невозможно. Для вырожденных систем ИДУ, если число уравнений больше размерности искомой вектор-функции, то системы принято называть переопределенными. Если число уравнений меньше размерности искомой вектор-функции, то такие системы называются недоопре- деленными. Переопределенным и недоопределенным системам соответствуют системы ИДУ с прямоугольными матрицами коэффициентов при старших про- изводных искомой вектор-функции. Если число уравнений совпадает с размер- ностью искомой вектор-функции, то будем их называть замкнутыми системами. Для замкнутых систем неполнота ранга матрицы перед старшей производной искомой вектор-функции эквивалентна тому, что определитель матрицы равен

8
нулю. Замкнутые системы рассматривались в работах В.Ф. Чистякова [98; 100], М.В. Булатова [19–24], Е.В. Чистяковой [90–95], С.С. Орлова, М.В. Фалалее- ва [85–88], В.К. Горбунова [30; 31], Е.Б. Кузнецова [40], С.С. Дмитриева [36], и т.д. Незамкнутые системы рассматриваются в диссертации впервые.
Диссертационная работа посвящена разработке теории начальных и крае- вых задач для вырожденных систем ИДУ. На основе этих разработок построены и исследованы модели, возникающие в теории нелинейных гидравлических и электрических цепей (ГЦ и ЭЦ). В таких моделях физические принципы моде- лирования взяты из работ О.А. Балышева, Э.А. Таирова [12] и Е.И. Ушакова [84].
В предыдущих поколениях моделей ГЦ для расчета использовали систе- мы алгебраических или дифференциально-алгебраических уравнений (АУ или ДАУ). Такие модели разрабатывались и исследовались в трудах А.П. Меренкова, В.Я. Хасилева [51], Н.Н. Новицкого [53], Е.В. Сенновой [68–71], Б.М. Кагано- вича [38; 39], М.Г. Сухарева [77–79], Ф.А. Вульмана [25], Д.Ф. Петерсона [66], К.Р. Айда-Заде [10], А.А. Логинова [47; 48], А.А. Левина [43–46], Э.А. Таиро- ва [81; 82], Е.В. Чистяковой [5] и т.д. В диссертации описываются модели ГЦ с автоматическими регуляторами в виде вырожденных систем ИДУ.
Итак, исследуемые в диссертации математические модели можно записать в виде вырожденных систем ИДУ
( ) ̇ + Γ( , , ) = 0, ∈ = [ , ], ( 1) где ( ) – ( × )-матрица, Γ( , , ) – вектор-функция соответствующей раз-

мерности, ∈ R , ∈ R , = ̃( , , ( )) – оператор Вольтерра, точнее

говоря, Γ : R ×R × → R , ̃ : × ×R → R . Предполагается, что
входные данные достаточно гладкие и выполнено условие
rank ( ) < min{ , } ∀ ∈ . ( 2) Если = , то условие (B2) эквивалентно равенству det ( ) ≡ 0 ∀ ∈ . 9 Для системы (B1) обычно задаются либо начальные ( ) = , – задан- ный вектор из R , либо краевые условия ( ( ), ( ))=0, :R ×R →R . ( 3) В работе рассматривается только классические решения. Под решением задачи (B1), (B3) будем понимать любую вектор-функцию ( ) ∈ C1( ), которая обра- щает равенства (B1), (B3) в тождества при подстановке. Для существования классических решений начальных задач ( ) = , где – заданный вектор, для системы ( 1) необходимо выполнение условия Кронекера-Капелли в начальной точке rank ( ) = rank( ( )| − Γ( ,0, )). Иначе ̇( ) в ( 1) не существует. Следовательно, не существует ( ) ∈ C1( ). Пример. Пусть задана система    1 −1 0 0 1( ) 1   ̇+  + ( , ) ( ) −  = 0, (0) =  , ∈ [0,1]. 00110 2( ) 2 Для существования классических решений этой системы необходимо условие Кронекера-Капелли. Из него вытекает, что 1 + 2 − 2(0) = 0. Мы знаем, что решения линейных систем ИДУ в нормальной форме ̇+ ( ) + ( , ) ( ) = , ∈ , ( )= , удовлетворяют неравенству ∈ , ̇ + ( ) + ( , ) ( ) = , ( ) = , ‖ − ‖C( ) ≤ , = , если справедливы оценки ‖ ( )− ( )‖C( ) ≤ , ‖ ( , )− ( , )‖C( )( × ) ≤ , ‖ − ‖C( ) ≤ , ‖ − ‖C( ) ≤ . 10 Здесь ( ), ( ), ( , ), ( , ) − ( × ) – непрерывные матрицы, ≡ ( ), ≡ ( ) – известные непрерывные вектор-функции, , – известные вектора из R . Выпишем систему ИДУ   0110 01   ̇ +   +   ( ) = , ∈ = [0,1]), ( 4) которая на отрезке имеет единственное решение для любой ∈ C2( ) 0001000   = ( ) −  01 00   ̇( ) + 0 ( )  . Если правые части системы (В4) взять в виде вектор-функций ( )=(01)⊤, ( )=(01+√ sin / )⊤, то для соответствующих им решений , имеем  √ √  ‖ − ‖ = (1/ + )cos →∞, C( )  √  sin C( ) хотя ‖ − ‖C( ) → 0 при → 0. В примере (В4) мы можем потребовать ма- лость отклонения − не в пространстве C( ), а в пространстве C1( ), и таким образом восстановить в некотором смысле непрерывность решений по ( ). К сожалению выбор метрики, в которой малы возмущения, не всегда дает такой эффект: произвольно малые и сколь угодно гладкие возмущения матриц коэффициентов могут менять размерность пространства решения ИДУ даже в линейном случае. Рассмотрим систему (В4) в случае, когда ( , ) ≡ 0  01 10   ̇ +   = ( ) , > 0
00 1
в отличие от исходной ИДУ имеет однопараметрическое семейство решений

−  1 ( , ) = / 1 + 0 ,

11
где – произвольное число из R1. Очевидно, что если ̸= 0, то ‖ − ‖ ( ) → ∞ при → 0.
Для примера (В4) условие Кронекера-Капелли необходимо, но недостаточно. Для вектора = (3 1)⊤ выполнено это условие, но 1(0) ≡ 0.
Целью диссертационной работы является исследование разрешимости вы- рожденных систем ИДУ и начальных, краевых задач для них, конструирование численных методов решения таких систем и применение для расчета динамики сложных ГЦ, ЭЦ.
При написании диссертации решались следующие конкретные задачи:
1. Получение критериев разрешимости вырожденных систем ИДУ и на-
чальных, краевых задач для них;
2. Разработка численных методов и создание комплекса программ, реали-
зующих эти методы;
3. Разработка моделей ГЦ, ЭЦ с автоматическими регуляторами на основе
теории вырожденных систем ИДУ;
4. Применение полученных результатов к исследованию математических
моделей.
Объект и предмет исследования. Объектом исследования являются вы-
рожденные системы ИДУ; модели ГЦ и ЭЦ с автоматическими регуляторами, записанные в виде вырожденных систем ИДУ. Предметом исследования явля- ются поиск критериев разрешимости начально-краевых задач для вырожденных систем ИДУ; разработка методов численного решения систем ИДУ с матрицей неполного ранга перед старшей производной искомой вектор-функции; исследо- вание свойств математических моделей ГЦ и ЭЦ, записанных в виде вырожден- ных систем ИДУ.
Методы исследования. В работе использованы результаты из теории обыкновенных дифференциальных уравнений и интегральных уравнений типа Вольтерра, теории дифференциальных, интегральных операторов, теории мат-

12
риц, а также сведения из теории ГЦ и ЭЦ. При исследовании численного реше- ния вырожденных систем ИДУ использованы основы метода наименьших квад- ратов и теории конечно-разностных схем. Для создания программ, реализующих численные методы решения начальных, краевых задач для вырожденных систем ИДУ и комплекса программ, моделирующих ГЦ и ЭЦ, использована среда разра- ботки Matlab версии 7.11.0.584 (R2010b) в операционной системе Window 7×32 бита.
Достоверность полученных результатов подтверждается строгими дока- зательствами теорем существования решений вырожденных систем ИДУ и начально-краевых задач для них, доказательствами сходимости предлагаемых численных методов и расчетами тестовых примеров. Достоверность математи- ческих моделей ГЦ и ЭЦ базируется на наблюдениях прошлых лет за функцио- нированием реального оборудования.
Тематика работы соответствует следующим пунктам паспорта специаль- ности 05.13.18: п. 1 «Разработка новых математических методов моделирования объектов и явлений»; п. 2 «Развитие качественных и приближенных аналитиче- ских методов исследования математических моделей»; п. 3 «Разработка, обос- нование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий»; п. 5 «Комплексные исследования на- учных и технических проблем с применением современной технологии матема- тического моделирования и вычислительного эксперимента».
Научная новизна
1. Создана теоретическая основа для численного исследования вырожден- ных систем ИДУ: доказаны теоремы существования и единственности решений начальных и краевых задач для вырожденных систем ИДУ, включая системы с прямоугольными матрицами коэффициентов. Си- стемы с прямоугольными матрицами коэффициентов исследованы впер- вые. Разработаны новые численные методы на основе методов наимень- ших квадратов и разностных схем, позволяющие находить приближен-

13
ные решения начальных, краевых задач для вырожденных систем ИДУ. Получены оценки скорости сходимости этих методов к точным реше- ниям таких задач.
2. Впервые проведены аналитическое и численное исследования матема- тических моделей ГЦ и ЭЦ с автоматическими регуляторами в виде вырожденных систем ИДУ и учетом состояния среды на ветвях: пар, вода, пароводяная смесь.
3. Разработан комплекс программ нахождения приближенного решения краевых задач для вырожденных систем ИДУ, и начальных задач, опи- сывающих модели ГЦ и ЭЦ с автоматическими регуляторами. Раз- работанный комплекс программ позволяет проводить вычислительные эксперименты для модельных и реальных задач, исследовать свойства предложенных алгоритмов (в частности, оценивать обусловленность линейных алгебраических систем, к решению которых сводится реа- лизация алгоритмов).
Теоретическая значимость
1. Предложен метод формирования вырожденных систем ИДУ, описыва- ющих ГЦ и ЭЦ при наличии автоматических регуляторов и различных законов падения давлений на ветвях ГЦ.
2. Доказаны теоремы существования и единственности решений вырож- денных систем ИДУ.
3. Построены численные методы решения для таких систем.
Практическая значимость результатов исследования заключается в сле- дующем:
1. Модель, рассматриваемая в работе, представляет составную часть мо- дели прямоточного котла и турбины, которые являются частью обору- дования тепловой электростанции. Полные модели включают в себя си- стемы, состоящие из сотен алгебраических, дифференциальных и инте- гральных уравнений. Полное теоретическое исследование таких боль-

14
ших систем не представляется возможным. На компактных моделях, рассматриваемых в данной диссертации, предполагается отрабатывать принципиальные вопросы построения полных моделей;
2. Разработанная программная система позволяет реализовать модели ГЦ и ЭЦ и рассчитывать режимы работы этих моделей.
Апробация. Основные результаты и положения диссертационной работы докладывались и обсуждались на следующих научных семинарах и конферен- циях:
– Всероссийская молодёжная научно-практическая конференция «Малые Винеровские чтения», г. Иркутск, 2013 г.;
– Ляпуновские чтения, ИДСТУ СО РАН, 2013 г.;
– Всероссийская молодежная научно-практическая конференция «Малые
Винеровские чтения», г. Иркутск, 2014 г.;
– IV международная школа-семинар «Нелинейный анализ и экстремаль-
ные задачи», г. Иркутск, 2014 г.;
– XIX Байкальская Всероссийская конференция «Информационные и ма-
тематические технологии в науке и управлении», г. Иркутск, 2014 г.;
– XV Всероссийская конференция молодых ученых по математическому
моделированию и информационным технологиям. г. Тюмень, 2014 г.;
– Международная конференция «Дифференциальные уравнения и матема-
тическое моделирование». г. Улан-Удэ, 2015 г.
Результаты диссертационного исследования неоднократно сообщались на
научных семинарах кафедры Вычислительной техники Иркутского националь- ного исследовательского технического университета (рук. – к.т.н., доцент Доро- феев А.С.).
Материалы диссертации опубликованы в журналах, трудах и тезисах на- учных конференций [56–64]. Статьи [3; 61; 62] опубликованы в журналах, вклю- ченных в список ВАК и SCOPUS: Вестник ЮУрГУ, серия «Математическое моделирование и программирование», Известия ИГУ, серия «Математика». По-

15
лучены свидетельства о государственной регистрации программ для ЭВМ No 2014615157 от 20 мая 2014 г. [54] и No 2015660014 от 21 сентября 2015 г. [55].
Личный вклад. Все результаты получены лично соискателем. Руководи- телю и соавтору принадлежат некоторые постановки задач, рассматриваемых в диссертации. Все необходимые заимствования отмечены ссылками на соответ- ствующие литературные источники.
Структура и объём диссертации. Диссертация включает в себя следую- щие разделы: введение, 4 глав, заключения, список литературы и приложения.
Во введении обоснована актуальность направления исследований, обрисо- ван класс задач, которые приводят к необходимости решать системы, содержа- щие алгебраические дифференциальные и интегральные уравнения, а также дан обзор текущей литературы по теме диссертации.
Глава 1 посвящена разрешимости вырожденных систем ИДУ, включая под- ходы к определению индекса. В ней получены теоремы разрешимости началь- ных и краевых задач для линейных и квазилинейных систем ИДУ.
В главе 2 рассматриваются численные методы решения начальных и крае- вых задач для вырожденных систем ИДУ.
Глава 3 посвящена описанию и исследованию математической модели ГЦ и ЭЦ с автоматическими регуляторами на основе вырожденных систем ИДУ.
Глава 4 посвящена описанию комплекса программ для решения исследуе- мых задач на языке Matlab.
В заключении подведены итоги проделанной работы и перечислены ос- новные научные результаты диссертации.
Список использованной литературы составлен в алфавитном порядке, включает в себя 100 ссылок.
В приложении прилагаются полученные свительства регистрации про- грамм для ЭВМ.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дарья П. кандидат наук, доцент
    4.9 (20 отзывов)
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных... Читать все
    Профессиональный журналист, филолог со стажем более 10 лет. Имею профильную диссертацию по специализации "Радиовещание". Подробно и серьезно разрабатываю темы научных исследований, связанных с журналистикой, филологией и литературой
    #Кандидатские #Магистерские
    33 Выполненных работы
    Евгений А. доктор, профессор
    5 (154 отзыва)
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - ... Читать все
    Более 40 лет занимаюсь преподавательской деятельностью. Специалист в области философии, логики и социальной работы. Кандидатская диссертация - по логике, докторская - по социальной работе.
    #Кандидатские #Магистерские
    260 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Татьяна М. кандидат наук
    5 (285 отзывов)
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    Специализируюсь на правовых дипломных работах, магистерских и кандидатских диссертациях
    #Кандидатские #Магистерские
    495 Выполненных работ
    user1250010 Омский государственный университет, 2010, преподаватель,...
    4 (15 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    21 Выполненная работа
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ
    Елена С. Таганрогский институт управления и экономики Таганрогский...
    4.4 (93 отзыва)
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на напис... Читать все
    Высшее юридическое образование, красный диплом. Более 5 лет стажа работы в суде общей юрисдикции, большой стаж в написании студенческих работ. Специализируюсь на написании курсовых и дипломных работ, а также диссертационных исследований.
    #Кандидатские #Магистерские
    158 Выполненных работ
    Юлия К. ЮУрГУ (НИУ), г. Челябинск 2017, Институт естественных и т...
    5 (49 отзывов)
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - ин... Читать все
    Образование: ЮУрГУ (НИУ), Лингвистический центр, 2016 г. - диплом переводчика с английского языка (дополнительное образование); ЮУрГУ (НИУ), г. Челябинск, 2017 г. - институт естественных и точных наук, защита диплома бакалавра по направлению элементоорганической химии; СПХФУ (СПХФА), 2020 г. - кафедра химической технологии, регулирование обращения лекарственных средств на фармацевтическом рынке, защита магистерской диссертации. При выполнении заказов на связи, отвечаю на все вопросы. Индивидуальный подход к каждому. Напишите - и мы договоримся!
    #Кандидатские #Магистерские
    55 Выполненных работ
    Олег Н. Томский политехнический университет 2000, Инженерно-эконо...
    4.7 (96 отзывов)
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Явл... Читать все
    Здравствуйте! Опыт написания работ более 12 лет. За это время были успешно защищены более 2 500 написанных мною магистерских диссертаций, дипломов, курсовых работ. Являюсь действующим преподавателем одного из ВУЗов.
    #Кандидатские #Магистерские
    177 Выполненных работ

    Другие учебные работы по предмету

    Менеджер онлайн в Telegram Написать