Моделирование гидравлических и электрических цепей на основе теории вырожденных систем интегро-дифференциальных уравнений

Нгуен, Дык Банг

Обозначенияисоглашения……………………… 4
Введение……………………………….. 6
1. Разрешимостьначально-краевыхзадачдлявырожденныхсистем интегро-дифференциальныхуравнений . 16
1.1 Вспомогательныепонятия…………………… 16
1.2 ЛинейныесистемыИДУ …………………… 24
1.3 КраевыезадачидлясистемИДУиндекса1 . . . . . . . . . . . . . . 34
1.4 КвазилинейныесистемыДАУиИДУ …………….. 41
2. Численныеметодырешенияначально-краевыхзадачдля вырожденных систем интегро-дифференциальных уравнений . . . 47
2.1 Решение начально-краевых задач методом наименьших квадратов . 47
2.2 Программа для реализации метода наименьших квадратов . . . . . 52
2.3 Разностные схемы для решения вырожденных систем ИДУ . . . . 60
2.4 Численныеэксперименты…………………… 62
3. Моделированиегидравлическихиэлектрическихцепей,
записанных в виде вырожденных систем интегро-дифференциальныхуравнений …………….. 66
3.1 Моделированиегидравлическихцепей ……………. 66
3.1.1 Модель потокораспределения при расчетах статических гидравлическихцепей…………………. 66
3.1.2 Представление динамической модели гидравлических цепейввидевырожденнойсистемыИДУ. . . . . . . . . . . 71
Основныеэлементыцепи ………………. 81
Общие принципы формирования моделей электрических цепей …………………………. 84
Представление электрических цепей в виде вырожденных системИДУ ……………………… 87
3
3.1.3 Характеристика объекта моделирования . . . . . . . . . . . . 72
3.1.4 Математическая модель гидравлической цепи связки
«Прямоточныйкотел-турбина» ……………. 77
3.2 Моделированиеэлектрическихцепей …………….. 81
3.3 Исследование моделей гидравлических и электрических цепей . . . 91 3.3.1 Исследование моделей гидравлических цепей . . . . . . . . 91 3.3.2 Исследование моделей электрических цепей . . . . . . . . . 94
4. Программный комплекс для исследования систем . . . . . . . . . . . 96
4.1 Программа для решения гидравлических цепей . . . . . . . . . . . 96 4.1.1 Описаниеструктурыпрограммы……………. 96 4.1.2 Результатырасчетов …………………..104
4.2 Программа для решения электрических цепей . . . . . . . . . . . . 108 4.2.1 Описаниеструктурыпрограммы…………….108 4.2.2 Результатырасчетов …………………..112
Заключение ………………………………117 Списоклитературы ………………………….118 Приложения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Актуальность исследования. В настоящее время многие эксперименталь- ные исследования можно заменить на исследование математических моделей физических процессов или технических устройств. Особенно это актуально при создании тренажеров рабочих мест энергетических и химических устано- вок. Многие модели в технических системах (на cовременном уровне модели- рования) описываются взаимосвязанными системами дифференциальных, ин- тегральных и алгебраических уравнений, которые можно записать в виде си- стем интегро-дифференциальных уравнений с матрицей неполного ранга перед старшей производной искомой вектор-функции. Алгебраические уравнения от- вечают за наличие в моделях балансовых соотношений, в частности, законов сохранения или уравнений состояния, системы дифференциальных уравнений описывают динамику процесса. Если процесс обладает последействием, то ма- тематическая модель может включать и интегральные уравнения. Такие системы принято называть вырожденными системами интегро-дифференциальных урав- нений (ИДУ).
Численное решение краевых и начальных задач для вырожденных систем ИДУ сопряжено с большими трудностями: не существует достаточно развитой теории вырожденных систем ИДУ (недостаточно исследованы свойства разре- шимости, устойчивости решения к малым возмущениям, устойчивости в смыс- ле Ляпунова и т.д.); при переходе к дискретному аналогу вырожденных систем ИДУ существенно меняются свойства разрешимости (исходная задача может иметь решение, а ее дискретный аналог при сколь угодно малом шаге дискре- тизации нет; может иметь место и обратная ситуация); начальные или краевые условия должны принадлежать определенным многообразиям в пространстве фазовых переменных; сколь угодно малое возмущение входных данных может повлечь сколь угодно большое изменение решений.
7
В частности, модели гидравлических и электрических цепей (ГЦ и ЭЦ) описываются вырожденными системами ИДУ. С практической точки зрения ак- туальность обусловлена тем, что модели гидравлических и электрических цепей являются составной частью моделей сложных энергетических установок (па- ровых котлов, турбин, систем регенераций либо всего комплекса энергоблока тепловых электростаций). От качества моделирования гидравлических и элек- трических цепей существенно зависит качество комплексной модели всей энер- гоустановки.
Обзор литературы по теме диссертации. В течение последних сорока лет большое внимание уделяется системам дифференциальных уравнений с матри- цей неполного ранга или вырожденными оператором в области определения при старшей производной искомой вектор-функции и численным методам их реше- ния [9;17;41;74–76]. Вырожденные системы ИДУ и особенно численные методы решения краевых задач для них в прошлое тридцатилетие исследовались фраг- ментарно. Сейчас это быстро растущая область исследования. Ранее изучались только постановки начальных задач. Краевые задачи практически не рассматри- вались. Методы, применяемые в других работах (см., например, [4; 7]) при ре- шении краевых задач для дифференциально-алгебраических уравнений (ДАУ), сложно адаптировать к нашим задачам. А для систем с прямоугольными матри- цами коэффициентов это сделать и вовсе невозможно. Для вырожденных систем ИДУ, если число уравнений больше размерности искомой вектор-функции, то системы принято называть переопределенными. Если число уравнений меньше размерности искомой вектор-функции, то такие системы называются недоопре- деленными. Переопределенным и недоопределенным системам соответствуют системы ИДУ с прямоугольными матрицами коэффициентов при старших про- изводных искомой вектор-функции. Если число уравнений совпадает с размер- ностью искомой вектор-функции, то будем их называть замкнутыми системами. Для замкнутых систем неполнота ранга матрицы перед старшей производной искомой вектор-функции эквивалентна тому, что определитель матрицы равен

8
нулю. Замкнутые системы рассматривались в работах В.Ф. Чистякова [98; 100], М.В. Булатова [19–24], Е.В. Чистяковой [90–95], С.С. Орлова, М.В. Фалалее- ва [85–88], В.К. Горбунова [30; 31], Е.Б. Кузнецова [40], С.С. Дмитриева [36], и т.д. Незамкнутые системы рассматриваются в диссертации впервые.
Диссертационная работа посвящена разработке теории начальных и крае- вых задач для вырожденных систем ИДУ. На основе этих разработок построены и исследованы модели, возникающие в теории нелинейных гидравлических и электрических цепей (ГЦ и ЭЦ). В таких моделях физические принципы моде- лирования взяты из работ О.А. Балышева, Э.А. Таирова [12] и Е.И. Ушакова [84].
В предыдущих поколениях моделей ГЦ для расчета использовали систе- мы алгебраических или дифференциально-алгебраических уравнений (АУ или ДАУ). Такие модели разрабатывались и исследовались в трудах А.П. Меренкова, В.Я. Хасилева [51], Н.Н. Новицкого [53], Е.В. Сенновой [68–71], Б.М. Кагано- вича [38; 39], М.Г. Сухарева [77–79], Ф.А. Вульмана [25], Д.Ф. Петерсона [66], К.Р. Айда-Заде [10], А.А. Логинова [47; 48], А.А. Левина [43–46], Э.А. Таиро- ва [81; 82], Е.В. Чистяковой [5] и т.д. В диссертации описываются модели ГЦ с автоматическими регуляторами в виде вырожденных систем ИДУ.
Итак, исследуемые в диссертации математические модели можно записать в виде вырожденных систем ИДУ
( ) ̇ + Γ( , , ) = 0, ∈ = [ , ], ( 1) где ( ) – ( × )-матрица, Γ( , , ) – вектор-функция соответствующей раз-

мерности, ∈ R , ∈ R , = ̃( , , ( )) – оператор Вольтерра, точнее

говоря, Γ : R ×R × → R , ̃ : × ×R → R . Предполагается, что
входные данные достаточно гладкие и выполнено условие
rank ( ) < min{ , } ∀ ∈ . ( 2) Если = , то условие (B2) эквивалентно равенству det ( ) ≡ 0 ∀ ∈ . 9 Для системы (B1) обычно задаются либо начальные ( ) = , – задан- ный вектор из R , либо краевые условия ( ( ), ( ))=0, :R ×R →R . ( 3) В работе рассматривается только классические решения. Под решением задачи (B1), (B3) будем понимать любую вектор-функцию ( ) ∈ C1( ), которая обра- щает равенства (B1), (B3) в тождества при подстановке. Для существования классических решений начальных задач ( ) = , где – заданный вектор, для системы ( 1) необходимо выполнение условия Кронекера-Капелли в начальной точке rank ( ) = rank( ( )| − Γ( ,0, )). Иначе ̇( ) в ( 1) не существует. Следовательно, не существует ( ) ∈ C1( ). Пример. Пусть задана система    1 −1 0 0 1( ) 1   ̇+  + ( , ) ( ) −  = 0, (0) =  , ∈ [0,1]. 00110 2( ) 2 Для существования классических решений этой системы необходимо условие Кронекера-Капелли. Из него вытекает, что 1 + 2 − 2(0) = 0. Мы знаем, что решения линейных систем ИДУ в нормальной форме ̇+ ( ) + ( , ) ( ) = , ∈ , ( )= , удовлетворяют неравенству ∈ , ̇ + ( ) + ( , ) ( ) = , ( ) = , ‖ − ‖C( ) ≤ , = , если справедливы оценки ‖ ( )− ( )‖C( ) ≤ , ‖ ( , )− ( , )‖C( )( × ) ≤ , ‖ − ‖C( ) ≤ , ‖ − ‖C( ) ≤ . 10 Здесь ( ), ( ), ( , ), ( , ) − ( × ) – непрерывные матрицы, ≡ ( ), ≡ ( ) – известные непрерывные вектор-функции, , – известные вектора из R . Выпишем систему ИДУ   0110 01   ̇ +   +   ( ) = , ∈ = [0,1]), ( 4) которая на отрезке имеет единственное решение для любой ∈ C2( ) 0001000   = ( ) −  01 00   ̇( ) + 0 ( )  . Если правые части системы (В4) взять в виде вектор-функций ( )=(01)⊤, ( )=(01+√ sin / )⊤, то для соответствующих им решений , имеем  √ √  ‖ − ‖ = (1/ + )cos →∞, C( )  √  sin C( ) хотя ‖ − ‖C( ) → 0 при → 0. В примере (В4) мы можем потребовать ма- лость отклонения − не в пространстве C( ), а в пространстве C1( ), и таким образом восстановить в некотором смысле непрерывность решений по ( ). К сожалению выбор метрики, в которой малы возмущения, не всегда дает такой эффект: произвольно малые и сколь угодно гладкие возмущения матриц коэффициентов могут менять размерность пространства решения ИДУ даже в линейном случае. Рассмотрим систему (В4) в случае, когда ( , ) ≡ 0  01 10   ̇ +   = ( ) , > 0
00 1
в отличие от исходной ИДУ имеет однопараметрическое семейство решений

−  1 ( , ) = / 1 + 0 ,

11
где – произвольное число из R1. Очевидно, что если ̸= 0, то ‖ − ‖ ( ) → ∞ при → 0.
Для примера (В4) условие Кронекера-Капелли необходимо, но недостаточно. Для вектора = (3 1)⊤ выполнено это условие, но 1(0) ≡ 0.
Целью диссертационной работы является исследование разрешимости вы- рожденных систем ИДУ и начальных, краевых задач для них, конструирование численных методов решения таких систем и применение для расчета динамики сложных ГЦ, ЭЦ.
При написании диссертации решались следующие конкретные задачи:
1. Получение критериев разрешимости вырожденных систем ИДУ и на-
чальных, краевых задач для них;
2. Разработка численных методов и создание комплекса программ, реали-
зующих эти методы;
3. Разработка моделей ГЦ, ЭЦ с автоматическими регуляторами на основе
теории вырожденных систем ИДУ;
4. Применение полученных результатов к исследованию математических
моделей.
Объект и предмет исследования. Объектом исследования являются вы-
рожденные системы ИДУ; модели ГЦ и ЭЦ с автоматическими регуляторами, записанные в виде вырожденных систем ИДУ. Предметом исследования явля- ются поиск критериев разрешимости начально-краевых задач для вырожденных систем ИДУ; разработка методов численного решения систем ИДУ с матрицей неполного ранга перед старшей производной искомой вектор-функции; исследо- вание свойств математических моделей ГЦ и ЭЦ, записанных в виде вырожден- ных систем ИДУ.
Методы исследования. В работе использованы результаты из теории обыкновенных дифференциальных уравнений и интегральных уравнений типа Вольтерра, теории дифференциальных, интегральных операторов, теории мат-

12
риц, а также сведения из теории ГЦ и ЭЦ. При исследовании численного реше- ния вырожденных систем ИДУ использованы основы метода наименьших квад- ратов и теории конечно-разностных схем. Для создания программ, реализующих численные методы решения начальных, краевых задач для вырожденных систем ИДУ и комплекса программ, моделирующих ГЦ и ЭЦ, использована среда разра- ботки Matlab версии 7.11.0.584 (R2010b) в операционной системе Window 7×32 бита.
Достоверность полученных результатов подтверждается строгими дока- зательствами теорем существования решений вырожденных систем ИДУ и начально-краевых задач для них, доказательствами сходимости предлагаемых численных методов и расчетами тестовых примеров. Достоверность математи- ческих моделей ГЦ и ЭЦ базируется на наблюдениях прошлых лет за функцио- нированием реального оборудования.
Тематика работы соответствует следующим пунктам паспорта специаль- ности 05.13.18: п. 1 «Разработка новых математических методов моделирования объектов и явлений»; п. 2 «Развитие качественных и приближенных аналитиче- ских методов исследования математических моделей»; п. 3 «Разработка, обос- нование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий»; п. 5 «Комплексные исследования на- учных и технических проблем с применением современной технологии матема- тического моделирования и вычислительного эксперимента».
Научная новизна
1. Создана теоретическая основа для численного исследования вырожден- ных систем ИДУ: доказаны теоремы существования и единственности решений начальных и краевых задач для вырожденных систем ИДУ, включая системы с прямоугольными матрицами коэффициентов. Си- стемы с прямоугольными матрицами коэффициентов исследованы впер- вые. Разработаны новые численные методы на основе методов наимень- ших квадратов и разностных схем, позволяющие находить приближен-

13
ные решения начальных, краевых задач для вырожденных систем ИДУ. Получены оценки скорости сходимости этих методов к точным реше- ниям таких задач.
2. Впервые проведены аналитическое и численное исследования матема- тических моделей ГЦ и ЭЦ с автоматическими регуляторами в виде вырожденных систем ИДУ и учетом состояния среды на ветвях: пар, вода, пароводяная смесь.
3. Разработан комплекс программ нахождения приближенного решения краевых задач для вырожденных систем ИДУ, и начальных задач, опи- сывающих модели ГЦ и ЭЦ с автоматическими регуляторами. Раз- работанный комплекс программ позволяет проводить вычислительные эксперименты для модельных и реальных задач, исследовать свойства предложенных алгоритмов (в частности, оценивать обусловленность линейных алгебраических систем, к решению которых сводится реа- лизация алгоритмов).
Теоретическая значимость
1. Предложен метод формирования вырожденных систем ИДУ, описыва- ющих ГЦ и ЭЦ при наличии автоматических регуляторов и различных законов падения давлений на ветвях ГЦ.
2. Доказаны теоремы существования и единственности решений вырож- денных систем ИДУ.
3. Построены численные методы решения для таких систем.
Практическая значимость результатов исследования заключается в сле- дующем:
1. Модель, рассматриваемая в работе, представляет составную часть мо- дели прямоточного котла и турбины, которые являются частью обору- дования тепловой электростанции. Полные модели включают в себя си- стемы, состоящие из сотен алгебраических, дифференциальных и инте- гральных уравнений. Полное теоретическое исследование таких боль-

14
ших систем не представляется возможным. На компактных моделях, рассматриваемых в данной диссертации, предполагается отрабатывать принципиальные вопросы построения полных моделей;
2. Разработанная программная система позволяет реализовать модели ГЦ и ЭЦ и рассчитывать режимы работы этих моделей.
Апробация. Основные результаты и положения диссертационной работы докладывались и обсуждались на следующих научных семинарах и конферен- циях:
– Всероссийская молодёжная научно-практическая конференция «Малые Винеровские чтения», г. Иркутск, 2013 г.;
– Ляпуновские чтения, ИДСТУ СО РАН, 2013 г.;
– Всероссийская молодежная научно-практическая конференция «Малые
Винеровские чтения», г. Иркутск, 2014 г.;
– IV международная школа-семинар «Нелинейный анализ и экстремаль-
ные задачи», г. Иркутск, 2014 г.;
– XIX Байкальская Всероссийская конференция «Информационные и ма-
тематические технологии в науке и управлении», г. Иркутск, 2014 г.;
– XV Всероссийская конференция молодых ученых по математическому
моделированию и информационным технологиям. г. Тюмень, 2014 г.;
– Международная конференция «Дифференциальные уравнения и матема-
тическое моделирование». г. Улан-Удэ, 2015 г.
Результаты диссертационного исследования неоднократно сообщались на
научных семинарах кафедры Вычислительной техники Иркутского националь- ного исследовательского технического университета (рук. – к.т.н., доцент Доро- феев А.С.).
Материалы диссертации опубликованы в журналах, трудах и тезисах на- учных конференций [56–64]. Статьи [3; 61; 62] опубликованы в журналах, вклю- ченных в список ВАК и SCOPUS: Вестник ЮУрГУ, серия «Математическое моделирование и программирование», Известия ИГУ, серия «Математика». По-

15
лучены свидетельства о государственной регистрации программ для ЭВМ No 2014615157 от 20 мая 2014 г. [54] и No 2015660014 от 21 сентября 2015 г. [55].
Личный вклад. Все результаты получены лично соискателем. Руководи- телю и соавтору принадлежат некоторые постановки задач, рассматриваемых в диссертации. Все необходимые заимствования отмечены ссылками на соответ- ствующие литературные источники.
Структура и объём диссертации. Диссертация включает в себя следую- щие разделы: введение, 4 глав, заключения, список литературы и приложения.
Во введении обоснована актуальность направления исследований, обрисо- ван класс задач, которые приводят к необходимости решать системы, содержа- щие алгебраические дифференциальные и интегральные уравнения, а также дан обзор текущей литературы по теме диссертации.
Глава 1 посвящена разрешимости вырожденных систем ИДУ, включая под- ходы к определению индекса. В ней получены теоремы разрешимости началь- ных и краевых задач для линейных и квазилинейных систем ИДУ.
В главе 2 рассматриваются численные методы решения начальных и крае- вых задач для вырожденных систем ИДУ.
Глава 3 посвящена описанию и исследованию математической модели ГЦ и ЭЦ с автоматическими регуляторами на основе вырожденных систем ИДУ.
Глава 4 посвящена описанию комплекса программ для решения исследуе- мых задач на языке Matlab.
В заключении подведены итоги проделанной работы и перечислены ос- новные научные результаты диссертации.
Список использованной литературы составлен в алфавитном порядке, включает в себя 100 ссылок.
В приложении прилагаются полученные свительства регистрации про- грамм для ЭВМ.

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Вирсавия А. медицинский 1981, стоматологический, преподаватель, канди...
    4.5 (9 отзывов)
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - ... Читать все
    руководитель успешно защищенных диссертаций, автор около 150 работ, в активе - оппонирование, рецензирование, написание и подготовка диссертационных работ; интересы - медицина, биология, антропология, биогидродинамика
    #Кандидатские #Магистерские
    12 Выполненных работ
    Татьяна П. МГУ им. Ломоносова 1930, выпускник
    5 (9 отзывов)
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по и... Читать все
    Журналист. Младший научный сотрудник в институте РАН. Репетитор по английскому языку (стаж 6 лет). Также знаю французский. Сейчас занимаюсь написанием диссертации по истории. Увлекаюсь литературой и темой космоса.
    #Кандидатские #Магистерские
    11 Выполненных работ
    Екатерина П. студент
    5 (18 отзывов)
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно... Читать все
    Работы пишу исключительно сама на основании действующих нормативных правовых актов, монографий, канд. и докт. диссертаций, авторефератов, научных статей. Дополнительно занимаюсь английским языком, уровень владения - Upper-Intermediate.
    #Кандидатские #Магистерские
    39 Выполненных работ
    Катерина В. преподаватель, кандидат наук
    4.6 (30 отзывов)
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации... Читать все
    Преподаватель одного из лучших ВУЗов страны, научный работник, редактор научного журнала, общественный деятель. Пишу все виды работ - от эссе до докторской диссертации. Опыт работы 7 лет. Всегда на связи и готова прийти на помощь. Вместе удовлетворим самого требовательного научного руководителя. Возможно полное сопровождение: от статуса студента до получения научной степени.
    #Кандидатские #Магистерские
    47 Выполненных работ
    Рима С.
    5 (18 отзывов)
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный универси... Читать все
    Берусь за решение юридических задач, за написание серьезных научных статей, магистерских диссертаций и дипломных работ. Окончила Кемеровский государственный университет, являюсь бакалавром, магистром юриспруденции (с отличием)
    #Кандидатские #Магистерские
    38 Выполненных работ
    Анна К. ТГПУ им.ЛН.Толстого 2010, ФИСиГН, выпускник
    4.6 (30 отзывов)
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помог... Читать все
    Я научный сотрудник федерального музея. Подрабатываю написанием студенческих работ уже 7 лет. 3 года назад начала писать диссертации. Работала на фирмы, а так же помогала студентам, вышедшим на меня по рекомендации.
    #Кандидатские #Магистерские
    37 Выполненных работ
    Татьяна С. кандидат наук
    4.9 (298 отзывов)
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (пос... Читать все
    Большой опыт работы. Кандидаты химических, биологических, технических, экономических, юридических, философских наук. Участие в НИОКР, Только актуальная литература (поставки напрямую с издательств), доступ к библиотеке диссертаций РГБ
    #Кандидатские #Магистерские
    551 Выполненная работа
    Александр О. Спб государственный университет 1972, мат - мех, преподав...
    4.9 (66 отзывов)
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальн... Читать все
    Читаю лекции и веду занятия со студентами по матанализу, линейной алгебре и теории вероятностей. Защитил кандидатскую диссертацию по качественной теории дифференциальных уравнений. Умею быстро и четко выполнять сложные вычислительные работ
    #Кандидатские #Магистерские
    117 Выполненных работ
    Оксана М. Восточноукраинский национальный университет, студент 4 - ...
    4.9 (37 отзывов)
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политоло... Читать все
    Возможно выполнение работ по правоведению и политологии. Имею высшее образование менеджера ВЭД и правоведа, защитила кандидатскую и докторскую диссертации по политологии.
    #Кандидатские #Магистерские
    68 Выполненных работ

    Последние выполненные заказы

    Другие учебные работы по предмету

    Модели и алгоритмы параллельной обработки гидроакустической информации линейных антенных решёток
    📅 2022год
    🏢 ФГАОУ ВО «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)»
    Математическое моделирование равновесных форм капиллярных поверхностей
    📅 2021год
    🏢 ФГАОУ ВО «Самарский национальный исследовательский университет имени академика С.П. Королева»