Молекулярно-генетический и биоинформационный скрининг вирулентных бактериофагов Staphylococcus aureus на основе анализа CRISPR/Cas-системы бактерии

Борисенко Андрей Юрьевич
Бесплатно
В избранное
Работа доступна по лицензии Creative Commons:«Attribution» 4.0

ВВЕДЕНИЕ …………………………………………………………………………………………………… 4
ОБЗОР ЛИТЕРАТУРЫ …………………………………………………………………………………. 11
ГЛАВА 1. ОБЩАЯ ХАРАКТЕРИСТИКА БАКТЕРИЙ РОДА STAPHYLOCOCCUS
……………………………………………………………………………………………………………………. 11
1.1. Таксономическое положение, морфология, биологические и физико-
химические свойства, факторы патогенности бактерий рода Staphylococcus …….. 11
1.2. Бактериофаги Staphylococcus aureus: морфология, биологические и физико-
химические свойства, специфичность, препараты для лечения стафилококковой
инфекции, ограничения в применении …………………………………………………………… 24
ГЛАВА 2. CRISPR/CAS-СИСТЕМЫ БАКТЕРИЙ: СТРУКТУРА,
ФУНКЦИОНАЛЬНЫЕ МЕХАНИЗМЫ ДЕЙСТВИЯ, ТЕХНОЛОГИИ АНАЛИЗА
……………………………………………………………………………………………………………………. 29
2.2. CRISPR/Cas-система Staphylococcus aureus: формирование, генетическая
структура, функции ………………………………………………………………………………………. 42
2.3.Молекулярно-генетические и биоинформационные технологии анализа
CRISPR/Cas- системы …………………………………………………………………………………… 43
СОБСТВЕННЫЕ ИССЛЕДОВАНИЯ …………………………………………………………….. 49
ГЛАВА 3. МАТЕРИАЛЫ И МЕТОДЫ ………………………………………………………….. 49
3.1. Материалы …………………………………………………………………………………………….. 49
3.2. Микробиологические методы ………………………………………………………………….. 52
3.3. Молекулярно-генетические методы исследования ……………………………………. 57
3.3. Биоинформационные методы поиска и анализа CRISPR/Cas-систем ………….. 62
ГЛАВА 4. ХАРАКТЕРИСТИКА УСТОЙЧИВОСТИ ВЫДЕЛЕННЫХ ОТ
БОЛЬНЫХ ШТАММОВ STAPHYLOCOCCUS AUREUS К ДЕЙСТВИЮ
АНТИБИОТИКОВ И БАКТЕРИОФАГОВ……………………………………………………… 66
4.1. Изучение чувствительности культур S. аureus к антибиотикам ………………….. 66
4.2. Изучение чувствительности штаммов S. аureus к препаратам на
основе бактериофагов …………………………………………………………………………………… 73
ГЛАВА 5. МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОЕ И БИОИНФОРМАЦИОННОЕ
ИССЛЕДОВАНИЕ CRISPR/CAS-СИСТЕМЫ В ШТАММАХ S. АUREUS ……….. 81
ГЛАВА 6. ЭКСПЕРИМЕНТАЛЬНАЯ АПРОБАЦИЯ РАЗРАБОТАННОЙ
МОДЕЛИ АЛГОРИТМА МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКОГО И
БИОИНФОРМАЦИОННОГО СКРИНИНГА БАКТЕРИОФАГОВ НА ОСНОВЕ
ИЗУЧЕНИЯ CRISPR-КАССЕТ В CRISPR/CAS-СИСТЕМАХ БАКТЕРИЙ ………. 91
ЗАКЛЮЧЕНИЕ ……………………………………………………………………………………………. 98
ВЫВОДЫ ………………………………………………………………………………………………….. 103
СПИСОК ЛИТЕРАТУРЫ ……………………………………………………………………………. 105

В обзоре литературы представлен анализ опубликованных работ отечественных и зарубежных ученых в первой главе по вопросам биологических и клинико-эпидемиологических особенностей S. aureus, о роли данной бактерии в развитии различных заболеваний человека, диагностики и тяжести борьбы с данным возбудителем, а во второй главе – изучению молекулярно-генетических особенностей строения генома и системы СRISPR бактерии.
Материалы и методы исследования (глава 3) Объекты и методы исследования
Диссертационное исследование выполнено на базе кафедры микробиологии, вирусологии и иммунологии ФГБОУ ВО ИГМУ Минздрава России в период с 2014 по 2019 г., а также микробиологические и молекулярно-генетические исследования проводили в НИИ Биомедицинских технологий ФГБОУ ВО ИГМУ, совместно с ведущим научным сотрудником НИИ БМТ ИГМУ, к.б.н. Джиоевым Юрием Павловичем; к.м.н., старшим научным сотрудником НИИ БМТ ИГМУ Степаненко Лилией Александровной; к.м.н., доцентом кафедры патологической физиологии и клинической лабораторной диагностики Карноуховой Ольгой Геннадьевной.
Объекты исследования.
Бактерии. В работе использовано 398 полногеномных последовательностей ДНК S. aureus из базы данных GenBank NCBI (https://www.ncbi.nlm.nih.gov/) и 106 штаммов S. aureus, выделенных из различных биотопов (кишечник, зев, нос, эякулят) больных, обратившихся за медицинской помощью в лечебные учреждения г. Иркутска в 2015-2016 гг. на базе микробиологической лаборатории НИИ БМТ ИГМУ под руководством к.м.н. Карноуховой О.Г. Его забирали при
Название пар праймеров Primer pair1
Primer pair 2 Primer pair 3 Primer pair 4 Primer pair 5
Структура праймера (5′->3′)
F- AATCGGGTTGTTCAAGACCT
R- GTTGCGTTAATGGAGAGTGCT F- TGTCACAGTTTTTGACAGCCA R- CTATTACCGTTCTCGTCCCC
F- AATCGGGTTGTTCAAGACCT
R- GTTGCGTTAATGGAGAGTGCT F- TTTAGGAAGTATTTTACATG
R- CCAGAAAATTCACCAAACTTCA F- CACCTAACTCACTATCAAT
R- CCATCCCCTAAAAATAATC
поступлении пациентов с соблюдением этических принципов проведения медицинских исследований, изложенных в Хельсинской декларации Всемирной организации здравоохранения (WMA Declaration of Helsinki). Забор и доставку материала осуществляли в соответствии с Приказом Минздрава СССР от 22.04.1985 г. No 535.
Антибактериальные препараты. С целью определения чувствительности штаммов к антибиотикам в работе использовались диски, пропитанные антибиотиками (производство ФБУН НИИ эпидемиологии и микробиологии им. Пастера): бензилпенициллин – 10 мкг; оксациллин – 1 мкг; гентамицин – 10 мкг; эритромицин – 15 мкг; ципрофлоксацин – 5 мкг; клиндамицин – 2 мкг; офлоксацин – 5 мкг; ванкомицин – 30 мкг.
Препараты бактериофагов. У выделенных штаммов S. aureus определяли чувствительность к фаговым препаратам: 1) Пиобактериофаг поливалентный очищенный. Производитель: ФГУП «НПО» Микроген», Россия (г. Уфа); 2) Пиобактериофаг комплексный. Производитель: ФГУП «НПО» Микроген», Россия (г. Нижний Новгород); 3) Бактериофаг стафилококковый. Производитель: ФГУП «НПО» Микроген», Россия (г. Нижний Новгород); 4) Интести-бактериофаг. Производитель: ФГУП «НПО» Микроген», Россия (г. Нижний Новгород).
Праймеры. Используемые в работе олигонуклеотидные праймеры синтезировали в компании ООО «Биосинтез» г. Новосибирск. Представленные в таблице 1 праймеры для ПЦР были наработаны на основе проведенного анализа фланкирующих последовательностей CRISPR-кассет, обнаруженных в геномах S. aureus из базы GenBank, методами биоинформатики при помощи программы PrimerBlast (https://www.ncbi.nlm.nih.gov/tools/primer-blast/).
Таблица 1. Нуклеотидные последовательности, использованные в качестве фланкирующих
праймеров CRISPR-кассет
Для детекции
основные генов cas в геномах S. aureus; данные праймеры представлены в таблице 2.
в геномах CRISPR-системы, были синтезированы праймеры на
Таблица 2. Нуклеотидные последовательности, использованные в качестве праймеров генов
CRISPR-системы S. aureus Название праймеров Структура праймера (5′->3′)
Cas 1
F – ACTCATTTCGAATCCATGTAAAGC R – AAACGTGGACGGTACAATGA
F- AGCACTCTCCATTAACGCAAC
R- TTCTTGCAGCCTGTGCTTCT
Cas 2
F – CGAGAGGTATGTCAGCGATGT R – TCGCACAACAACCTTAACCTCT F- ACGAGAGGTATGTCAGCGAT
R- TCGCACAACAACCTTAACCTC
Cas 6
F – AGGAAGTATTTTACATGGTGT
R – AACCTGAAAATTCGCCAAAC
F – AGATAGCCGAGCTATTCACTTCT R – TCGATTCAATTCCTCTGTTTCTAA
Секвенирование фрагментов CRISPR-кассет осуществляли на базе Государственного Бюджетного Учреждения Здравоохранения “Иркутский областной онкологический диспансер” по методу Сенгера на капиллярном секвенаторе Applied Biosystems 3500.
Методы исследования.
Бактериологическое исследование. Выделение и идентификация S. aureus проводились в соответствии с Приказом Минздрава СССР от 22.04.1985 No 535 «Об унификации микробиологических (бактериологических) методов исследования, применяемых в клинико-диагностических лабораториях лечебно- профилактических учреждений», с использованием метода посева биологического материала по Голду. Количественную оценку ДНК-зной активности проводили в соответствии с рекомендациями Е.М. Гординой (2015), гемолитической – Н.Г. Ходаковой (2008).
Определение чувствительности к антибиотикам проводили Диско- диффузионным методом (ДДМ) на поверхности агара Мюллера-Хинтон в соответствии с МУК 4.2.1890-04. В качестве тестируемых препаратов использовали основные группы антибиотиков, рекомендованных соответствующими методическими указаниями (МУК, 2004) и на основании литературных данных о встречаемой устойчивости штаммов S.aureus к препаратам. Определение чувствительности к препаратам бактериофагов проводилось в соответствии с МУК 4.2.1890-04.
Молекулярно-генетическое исследование. Для определения принадлежности выделенных бактерий к виду Staphylococcus aureus использовали набор реагентов «АмплиСенс MRSA-скрин-титр-FL», предназначенный для выявления ДНК метициллин-чувствительного и метициллин-резистентного S. аureus, в биологическом материале методом полимеразной цепной реакции (ПЦР) с гибридизационно-флуоресцентной детекцией. Для экстракции ДНК
использовали комплект реагентов «РИБО-преп» («АмплиСенс», Россия), рекомендованный ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, в соответствии с инструкцией. Выделение ДНК проводили в присутствии внутреннего контрольного образца – ВКО STI-87, что позволило контролировать процедуру анализа каждого образца.
Выделенную ДНК непосредственно использовали для постановки ПЦР с детекцией в реальном времени на амплификаторе Rotor-Gene Q (QIAGEN, Германия). Для амплификации использовали комплект реагентов «MRSA-скрин- титр-FL» (АмплиСенс, Россия). Приготовление реакционных смесей проводили согласно инструкции к набору реагентов.
Электрофорез продуктов амплификации ДНК. Результат ПЦР-реакций с наработанными праймерами для получения фрагментов CRISPR-кассет и детекции генов cas подтверждали стандартным методом электрофореза в агарозном геле (Великов, 2013).
Разработка биоинформационного программного алгоритма. Поиск генов CRISPR-систем, повторяющихся последовательностей и спейсеров в расшифрованных геномных последовательностях S. aureus осуществляли при помощи ряда отобранных биоинформационных программ. В итоге был сформирован программный алгоритм поиска и анализа CRISPR, состоящий из ряда программ. Для поиска генов cas, определения их функциональных и структурных характеристик использовали три программных моделирования: Macromolecular System Finder (MacSyF, ver. 1.0.2), с вспомогательными пакетами makeblastDB (ver. 3.0) и HMMER (ver. 2.2.28), и онлайн доступных софтов: CRISPRCasFinder (https://crisprcas.i2bc.paris-saclay.fr/CrisprCasFinder/Index) и CRISPROne (https://omics.informatics.indiana.edu/CRISPRone/). Схема идентификации CRISPR- генов, основанная на обнаружении консенсусного варианта cas-генов в геномах S. aureus, представлена на рисунке 1.
Полногеномные последовательности S. aureus, загруженные из базы данных Genbank (NCBI)
Macromolecular System Finder (MacSyF, ver. 1.0.2)
Рисунок 1. Обнаружение консенсусного варианта cas-генов в геномах Staphylococcus aureus.
CRISPRCasFinder [online] CRISPROne [online]
Обнаружение повторяющихся последовательностей (CRISPR-кассет) осуществляли при помощи ряда программ: CRISPR RT (http://www.room220. com/crt/); CRISPI: CRISPR-interactivedatabase (http://crispi.genouest.org); CRISPRsFinder (http://crispr.u-psud. fr/); CRISPRDetect: A flexiblealgorithmtodefine CRISPR arrays (http://brownlabtools.otago.ac.nz/CRISPRDetect/ predict_crispr_ array.html), онлайн доступный софт CRISPRCasFinder (https://crisprcas.i2bc.paris- saclay.fr/CrisprCasFinder/Index). Результаты обнаружения считались достоверными только при совпадении повторов и спейсеров в ряде программ. Для детекции бактериофагов и плазмид в обнаруженных спейсерных участках посредством биоинформационных алгоритмов BLASTn по молекулярным базам Gen_Bank- Phage использовали программы CRISPRTarget (http:// bioanalysis.otago.ac.nz/CRISPRTarget/crispr_analysis.html) и Mycobacteriophage Database (http://phagesdb. org/blast/) (рис. 2).
Рисунок 2. Идентификация повторяющихся и спейсерных последовательностей при помощи биоинформационных программ. Красным выделена область результатов совпадений программных компонентов.
Анализ секвенированных фрагментов CRISPR-кассет осуществляли при помощи программ BioEdit v. 7.0.4, Applied BiosystemsSequencing Analysis Software v. 5.3.1, Genius prime 2019, v. 2.1
Методы статистического анализа данных. Статистическую обработку и анализ математических данных производили с помощью компьютерных программ Microsoft Excel, версия 7.0, STATISTICA, версия 7.0. Вычисляли средние арифметические значения, ошибки средних величин и доверительные интервалы. Достоверность различий между статистическими параметрами определяли с помощью t-критерия Стьюдента. Корреляционный анализ с целью изучения связи

между чувствительностью / устойчивостью к антибиотикам и бактериофагам проведен с применением коэффициента ранговой корреляции Спирмена (Шелудько, 2016).
РЕЗУЛЬТАТЫ РАБОТЫ И ИХ ОБСУЖДЕНИЕ Характеристика устойчивости выделенных от больных штаммов
Staphylococcus aureus к действию антибиотиков и бактериофагов (глава 4). Исследование антибиотикорезистентности 106 штаммов S. aureus позволило выявить высокий удельный вес резистентных культур для исследуемых антибиотиков. Результаты исследования показали, что к антибиотикам группы пенициллинов – бензилпенициллину и его полусинтетическому аналогу оксациллину, резистентность S. aureus составляла 32,1±4,5% и 12,3 ± 3,2% соответственно. Чуть выше была резистентность к представителю первого поколения ряда макролидов – эритромицину, которая составляла 15±3,5%. Анализ резистентности штаммов к препарату группы гликопептидов – ванкомицину показал, что устойчивыми были 3,8±1,9% исследованных изолятов. К препаратам фторхинолонов второго поколения отмечался столь же высокий уровень чувствительности: для ципрофлоксацина резистентность оказалась равна 2,8 ± 1,6%, а для офлоксацина- 1,9±1,3%. Точно такой же уровень резистентности показал анализ и для линкозамидов, а именно клиндамицина – 1,9±1,3%. Наименьший уровень резистентности наблюдался для представителя группы аминогликозидов гентамицина, к которому оказались нечувствительны лишь 0,9 ±
0,9% исследованных штаммов.
Исследование устойчивости штаммов к препаратам бактериофагов
проводимые в соответствии с МУК 4.2.1890-04 позволили выявить максимальный уровень резистентности для стафилококкового бактериофага – 55,6 ± 4,8%. Резистентность к интести-бактериофагу составляла 43,4 ± 4,8%, к пиобактериофагу поливалентному очищенному – 42,5 ± 4,8%. Наименьшую резистентность изоляты показали к пиобактериофагу комплексному, к которому устойчивыми оказались 39,6 ± 4,7% штаммов.
С целью изучения тесноты связи между антибиотикорезистентностью и устойчивостью к бактериофагам была проведена сравнительная оценка штаммов по выборочному линейному коэффициенту корреляции (Таблица 3).
Таблица 3. Сводная таблица частоты устойчивых (R) и чувствительных (S) к антибиотикам
стафилококков и устойчивых (R) и чувствительных (S) к бактериофагам штаммов стафилококков и корреляции (r) между чувствительностью – устойчивостью к антибиотикам и бактериофагам (%).
Бактериофаг и
Антибиотики
Пен Окс Эри Ван Цип Офл Кл Ген SRSRSRSRSRSRSRSR
% 67, 32, 87, 12, 8 1 96, 3, 97, 2, 98, 1, 98, 1, 99, 0, % 9173552828191919

S 63,1
0,9 0,88 0,89
0,73 0,44 0,47
0,9 0,77 0,64
0,9 0,78 0,81
0,83 0,82 0,82 0,82 0,81 0,35 0,35 0,34 0,34 0,33
0,71 0,53 0,52 0,52 0,52
0,73 0,72 0,71 0,71 0,70
R 39,6
2
3 4
S 44,4
R 55,6
S 56,6
R 43,4
S 57,2
R 42,5
Примечание: S (susceptible) – чувствительные микроорганизмы; R (resistant) – резистентные микроорганизмы; окс – оксациллин, ван – ванкомицин, пен – бензилпенициллин ген – гентамицин, эри – эритромицин, цип – ципрофлоксацин, кл -клиндамицин, офл – офлоксацин, 1 – комплексныйпиобактериофаг, 2 – стафилококковый бактериофаг, 3 – интести- бактериофаг, 4 – поливалентный очищенный бактериофаг.
Отсутствие взаимосвязи между множественной устойчивостью к бактериофагам и антибиотикорезистентностью подтверждается отсутствием статистически достоверной корреляции (р>0,05). Однако при анализе показателей чувствительности стафилококков в отношении отдельных антибиотиков и бактериофагов была выявлена связь у анализируемых штаммов. Полученные коэффициенты, сопоставленные со шкалой Чеддока, указали на высокую (0,7

Актуальность. Несмотря на большое число научных исследований, наличие
отечественных и зарубежных антибиотических препаратов для профилактики и
лечения бактериальных инфекций, в последние годы отмечается существенный
рост заболеваемости, вызванной золотистым стафилококком. Staphylococcus
aureus способен вызывать широкий спектр заболеваний – от кожных инфекций до
тяжелых септических состояний с возможным летальным исходом (Ефимова и
др., 2011, Nguyen et al., 2017; Giulieri et al., 2020). Открытие и использование в
практической медицине химиотерапевтических средств и антибиотиков сыграло
определяющую роль как в борьбе с инфекционными заболеваниями в течение
прошлого столетия, так и формировании резистентности к антибиотикам у
бактерии (Alós, 2015; Adeoye-Isijola et al., 2020). Повальное и не всегда
рациональное применение химиопрепаратов в клинической практике
способствовало распространению устойчивых к их действию штаммов. При этом
сложилась ситуация, когда необходимо дозировано подбирать несколько разных
типов антибиотиков, чтобы повлиять на бактериальную инфекцию, что в свою
очередь создало условия для формирования и распространения штаммов с
множественной устойчивостью к широко используемым антибиотикам и
химиопрепаратам (Santajit, Indrawattan, 2016). В настоящее время, согласно
данным литературы, происходит рост числа циркулирующих резистентных
стафилококков, являющихся причиной развития вторичных иммунодефицитов,
дисбактериозов и гнойно-воспалительных заболеваний (Кочетков, 2005; Дубовец,
2011; Никулина и др., 2016; Alvarez et al., 2010; David et al., 2017; Kadariya et al.,
2014; Park, Liu, 2020).
Анализ литературы показывает, что вопросы борьбы с возбудителем
разработаны недостаточно, и единственным выходом из сложившейся ситуации
является повышение доз и разработка новых поколений антибиотиков для
лечения инфекций, вызванных S. aureus. На фоне этой проблемы вновь
актуальной становится фаготерапия (Lin et al., 2017; Azam, Y. Tanji, 2019; Petrovic
Fabijan et al., 2020). Как показывают исследования препараты бактериофагов –
альтернатива антибиотикам по ряду причин: фаги уничтожают бактерию, не
повреждая клетки организма; прием бактериофагов не вызывает аллергии, не
снижает функции иммунной системы организма; производство препаратов
бактериофагов – экологически чистый процесс (Асланов, 2016, 2015; Бондаренко,
2013; Gordillo, Altamirano, 2019). Классическое определение чувствительности к
бактериофагам – представляет собой длительный процесс. Перед назначением
препарата бактериофага для решения вопроса о чувствительности к нему
возбудителя необходимо проводить оценку литических свойств бактериофага в
лабораторных условиях (Костюкевич, 2015). Современные геномные и
биоинформационные технологии позволяют целенаправленно моделировать
процесс отбора высокоспецифичных и вирулентных фагов против патогенных
микроорганизмов на основе геномных структур CRISPR/Cas бактерий.
Аббревиатура CRISPR/Cas переводится как «короткие палиндромные повторы,
регулярно расположенные группами». Посредством CRISPR-системы (Clustered

Заказать новую

Лучшие эксперты сервиса ждут твоего задания

от 5 000 ₽

Не подошла эта работа?
Закажи новую работу, сделанную по твоим требованиям

    Нажимая на кнопку, я соглашаюсь на обработку персональных данных и с правилами пользования Платформой

    Читать

    Публикации автора в научных журналах

    Детекция и анализ CRISPR-CAS-систем в геноме плазмиды PYC-1 из штамма BACILLUS THURINGIENSIS YC-10
    Н.А. Арефьева, Ю.П. Джиоев, А.Ю. Борисенко, Л.А. Степаненко, Н.П. Перетолчина, Ю.С. Букин, В.И. Чемерилова, О.Ф. Вятчина, О.А. Секерина, Ю.А. Маркова, Г.В. Юринова, В.П. Саловарова, А.А. Приставка, В.А. Кузьминова, А.С. Мартынова, В.И. Злобин //24Известия Иркутского государственного университета. Серия: Биология. Экология. – 2–Т. –С. 3
    Поиск и анализ CRISPR-CAS системы в штамме ESCHERICHIA COLI HS и детектируемых спейсерами CRISPR-кассеты фаговых рас методами биоинформатики
    Е.И. Иванова, Ю.П. Джиоев, А.Ю. Борисенко, Н.П. Перетолчина, Л.А. Степаненко, А.И. Парамонов, Е.В. Григорова, У.М. Немченко, Т.В. Туник, Е.А. Кунгурцева // Вестник Российского государственного медицинского университета. – 2– No – С. 28–(Scopus, РИНЦ).Ivanova E.I. The search and analysis of a CRISPR-Cas system in Escherichia coli HS with subsequent scanning for the corresponding phage races based on the spacers of the detected CRIPSR array using bioinformatic methods / E.I. Ivanova, Yu.P. Dzhioev, A.Yu. Borisenko, N.P. Peretolchina, L.A. Stepanenko, A.I. Paramonov, E.V. Grigorova, U.M. Nemchenko, T.V. Tunik, E.A. Kungurtseva // Bulletin of Russian State Medical University. – 2– No С. 26–(Web of Science).
    Биоинформационный алгоритм поиска и анализа crispr
    cas-систем искрининга фагов через спейсеры CRISPR-кассет штаммов Staphylococcus aureus / А.Ю. Борисенко, Ю.П. Джиоев, В.И. Злобин, Н.П. Перетолчина, А.И. Парамонов, Л.А. Степаненко, О.В. Колбасеева, В.А. Кузьминова // МОЛЕКУЛЯРНАЯ ДИАГНОСТИКА 2017 сборник трудов IХ Всероссийской научно-практической конференции с международным участием. – 2– С. 478–Борисенко А.Ю. Биоинформационный поиск и скрининг бактериофагов через спейсеры CRISPR/CAS-системы штамма Staphylococcus aureus mu3 / А.Ю. Борисенко, Ю.П. Джиоев, Н.П. Перетолчина, Л.А. Степаненко, В.М. Кузьминова, О.В. Колбасеева, Ю.М. Землянская, И.А. Филатова, В.И. Злобин // Актуальные проблемы науки Прибайкалья. – 2– С. 45

    Помогаем с подготовкой сопроводительных документов

    Совместно разработаем индивидуальный план и выберем тему работы Подробнее
    Помощь в подготовке к кандидатскому экзамену и допуске к нему Подробнее
    Поможем в написании научных статей для публикации в журналах ВАК Подробнее
    Структурируем работу и напишем автореферат Подробнее

    Хочешь уникальную работу?

    Больше 3 000 экспертов уже готовы начать работу над твоим проектом!

    Дмитрий К. преподаватель, кандидат наук
    5 (1241 отзыв)
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполня... Читать все
    Окончил КазГУ с красным дипломом в 1985 г., после окончания работал в Институте Ядерной Физики, защитил кандидатскую диссертацию в 1991 г. Работы для студентов выполняю уже 30 лет.
    #Кандидатские #Магистерские
    2271 Выполненная работа
    Сергей Н.
    4.8 (40 отзывов)
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных с... Читать все
    Практический стаж работы в финансово - банковской сфере составил более 30 лет. За последние 13 лет, мной написано 7 диссертаций и более 450 дипломных работ и научных статей в области экономики.
    #Кандидатские #Магистерские
    56 Выполненных работ
    Сергей Е. МГУ 2012, физический, выпускник, кандидат наук
    4.9 (5 отзывов)
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым напра... Читать все
    Имеется большой опыт написания творческих работ на различных порталах от эссе до кандидатских диссертаций, решения задач и выполнения лабораторных работ по любым направлениям физики, математики, химии и других естественных наук.
    #Кандидатские #Магистерские
    5 Выполненных работ
    Кормчий В.
    4.3 (248 отзывов)
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    Специализация: диссертации; дипломные и курсовые работы; научные статьи.
    #Кандидатские #Магистерские
    335 Выполненных работ
    Петр П. кандидат наук
    4.2 (25 отзывов)
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт напис... Читать все
    Выполняю различные работы на заказ с 2014 года. В основном, курсовые проекты, дипломные и выпускные квалификационные работы бакалавриата, специалитета. Имею опыт написания магистерских диссертаций. Направление - связь, телекоммуникации, информационная безопасность, информационные технологии, экономика. Пишу научные статьи уровня ВАК и РИНЦ. Работаю техническим директором интернет-провайдера, имею опыт работы ведущим сотрудником отдела информационной безопасности филиала одного из крупнейших банков. Образование - высшее профессиональное (в 2006 году окончил военную Академию связи в г. Санкт-Петербурге), послевузовское профессиональное (в 2018 году окончил аспирантуру Уральского федерального университета). Защитил диссертацию на соискание степени "кандидат технических наук" в 2020 году. В качестве хобби преподаю. Дисциплины - сети ЭВМ и телекоммуникации, информационная безопасность объектов критической информационной инфраструктуры.
    #Кандидатские #Магистерские
    33 Выполненных работы
    Дмитрий Л. КНЭУ 2015, Экономики и управления, выпускник
    4.8 (2878 отзывов)
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    Занимаю 1 место в рейтинге исполнителей по категориям работ "Научные статьи" и "Эссе". Пишу дипломные работы и магистерские диссертации.
    #Кандидатские #Магистерские
    5125 Выполненных работ
    Евгения Р.
    5 (188 отзывов)
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и со... Читать все
    Мой опыт в написании работ - 9 лет. Я специализируюсь на написании курсовых работ, ВКР и магистерских диссертаций, также пишу научные статьи, провожу исследования и создаю красивые презентации. Сопровождаю работы до сдачи, на связи 24/7 ?
    #Кандидатские #Магистерские
    359 Выполненных работ
    AleksandrAvdiev Южный федеральный университет, 2010, преподаватель, канд...
    4.1 (20 отзывов)
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    Пишу качественные выпускные квалификационные работы и магистерские диссертации. Опыт написания работ - более восьми лет. Всегда на связи.
    #Кандидатские #Магистерские
    28 Выполненных работ
    Логик Ф. кандидат наук, доцент
    4.9 (826 отзывов)
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские дисс... Читать все
    Я - кандидат философских наук, доцент кафедры философии СГЮА. Занимаюсь написанием различного рода работ (научные статьи, курсовые, дипломные работы, магистерские диссертации, рефераты, контрольные) уже много лет. Качество работ гарантирую.
    #Кандидатские #Магистерские
    1486 Выполненных работ

    Другие учебные работы по предмету

    Анализ формирования и микроструктуры биопленок Azospirillum baldaniorum
    📅 2022год
    🏢 ФБУН «Государственный научный центр прикладной микробиологии и биотехнологии»
    Сульфатредуцирующие и нефтеокисляющие бактерии донных отложений северной части Японского моря
    📅 2022год
    🏢 ФГБУН Пермский федеральный исследовательский центр Уральского отделения Российской академии наук
    Гены-регуляторы синтеза экзополисахаридов в формировании биопленок Rhizobium leguminosarum
    📅 2022год
    🏢 ФГБУН Пермский федеральный исследовательский центр Уральского отделения Российской академии наук
    Поиск новых свойств эндофитных бактерий Bacillus subtilis Cohn.
    📅 2021год
    🏢 ФГБУН Пермский федеральный исследовательский центр Уральского отделения Российской академии наук
    Конъюгативный перенос производной F-плазмиды в клетки штаммов экстраинтестинальной Escherichia coli
    📅 2021год
    🏢 ФГБУН Пермский федеральный исследовательский центр Уральского отделения Российской академии наук
    Новые рекомбинантные белки – антигены TREPONEMA PALLIDUM для серологической диагностики сифилиса
    📅 2021год
    🏢 ФГБУ «Национальный исследовательский центр эпидемиологии и микробиологии имени почетного академика Н.Ф. Гамалеи» Министерства здравоохранения Российской Федерации
    Оптимизация микробиологической диагностики инфекционных осложнений, вызванных нетуберкулезными микобактериями, у пациентов с муковисцидозом
    📅 2022год
    🏢 ФГБОУ ВО «Южно-Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации
    Оценка свойств пробиотических и аутопробиотических штаммов лактобацилл разными методами
    📅 2022год
    🏢 ФГБНУ «Научно-исследовательский институт вакцин и сывороток им. И.И. Мечникова»